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Preface
The BGMN program is the result of developments that started in 1980 when I was awarded my Ph.D.
degree. In the beginnings I worked at the profile model, the mathematical core and the GOAL concept
(experimental design). The development was carried out on IBM-similar mainframes of the Robotron
company in the PL/1 programming language.

As personal computers of higher speed became available, I started to encode the software into ANSI-C
on PC in 1989. The BGMN Rietveld program system has been developed since the end of 1993.

The staff of SEIFERT-FPM made excellent connections with Beta testers who promoted the program
improvement. My special thanks are said to Dr. Kleeberg from the Institute of Mineralogy of the
Freiberg University of Mining and Technology. Many applications of the phase analysis program
result from his inspirations. Dr. Jehnichen and Dr. Friedel of the Institute of Polymer Research in
Dresden influenced my works siginificantly, too. A lot of variants to handle molecule crystals were
inserted on their request. Thanks to Th. Monecke from the Freiberg institute, I was able to clarify the
unique PO model used in BGMN beginning with the 4th edition of this manual.

I am very grateful to the first user of the BGMN program who has also written this manual. From my
point of view, the manual becomes more expressive and to be handled easier, when it is written by an
experienced user instead of the developer himself.

Preface to the 2005 revision
Having passed 6 years of BGMN development, I have totally revised the BGMN manual. For exam-
ple, now there is a GUI named BGMNwin, which will be distributed with BGMN. The installation
instruction was rewritten from scratch, and some functions of the old package are no longer needed.
Thanks again to Dr. Kleeberg for his helpfull discussion.

Jörg Bergmann — Dresden, June 30, 2009

How to get support
If you have any questions, please have a look at the BGMN site at

http://www.bgmn.de

If this does not help: The firm Rich. Seifert & Co., Ahrensburg, Germany, is responsible for every
question, in first line. You may directly contact the program author at

support@bgmn.de
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Chapter 1

Introduction

1.1 The Use of the Rietveld method in X-ray powder diffracto-
metry

The standard application of X-ray powder diffraction is qualitative and quantitative phase analysis.
Starting from the pioneering work of H. Rietveld [23], [24], powder diffraction methods are also used
for structure refinement and structure solution when single crystals are not available. During the last
twenty years, a lot of efforts were undertaken to combine the Rietveld method with microstructural
analysis in sophisticated whole-pattern fitting methods. Thus, an ongoing development of programs
for the analysis of powder diffraction patterns can be observed.

1.2 Practical problems

Rietveld analysis can be executed in a lot of programs. Many functions were added since the first
publication of H. Rietveld in 1967 [23].

Most of the developers paid special attention to extend the profile model enabling the user to describe
the peak shape within a wide angular range as exact as possible. Despite of all efforts, it was not
possible to introduce a universal, precise profile model easy to be used until now. Up to twelve pa-
rameters are required to represent the profile shape over the entire angular range. These parameters
must be fitted in conjunction with the crystallographic model parameters, resulting in parameter cor-
relation present. This is a main source of divergence of the optimization algorithm, incorrect minima
and program crashes.

In addition, the wide-spread Rietveld programs like DBWS [29] need a lot of intuition for operation:
Having declared an unfavorable set of parameters, the Rietveld programs react very sensibly. As a
rule, they breakdown with an error inside the numerical library. In that case, the calculation which
had been terminated compulsorily must be restarted from the beginning. This termination results from
the use of simple optimization algorithms which cannot consider the physically reasonable ranges of
parameters.

BGMN was developed to overcome these problems.

1.3 Using this manual

This manual is written for support and guidance to study the BGMN program system. A structure
refinement of anglesite (PbSO4) is described as a first application and for fast learning (in the chapter
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“Guide through the program”). The mathematical fundamentals of the Rietveld analysis are explained
in the chapter “Theory”. Correct data acquiring is an important precondition for evaluation. For that
reason, a chapter on sample preparation and the measuring strategy is inserted. Further chapters deal
with preferred fields of application known as “phase analysis” and “size/strain analysis”. Special
features of BGMN are described in the chapters “learnt peak profiles” and “hkl intensity extract-
ing/LeBail fitting”.

A comprehensive table of references explaining program parameters and integrated files completes
the manual.

For better visualisation, some phrases are formatted as mentioned below:

• File names are written in italics,

• Program names are printed in bold letters,

• Environment variables and parameter names are printed in sans serif font,

• Output texts of the programs as well as inputs to the program are printed in Courier font.

All periods for running the program refer to a computer with a Pentium 4 processor, clock frequency
2.4 GHz, 1 GB RAM.



Chapter 2

Advantages of BGMN

2.1 New profile model

As the obviously most important advantage of the BGMN program system, a completely innovative
peak profile model was introduced into the Rietveld analysis for the very first time. We succeeded
to completely separate the influences of the experimental set-up (device function) on the measured
diffraction pattern from the sample’s contribution. The device function is computed by ray-tracing
method or extracted from a standard measurement as a preceding operation. When running the opti-
misation algorithm, all profile parameters depending on the device are kept constant. Following this
strategy, correlation between profile and structure parameters — as found in other Rietveld programs
— is completely eliminated.

If the device function is calculated by raytracing from fundamental device parameters it is easy to
enhance the angular range of the Rietveld analysis down to a 2Θ angle of 6o despite of the asymmetry
of the lines in this region without significant lost of precision. Thus, larger divergencies can be
accepted in order to enhance the intensity for better results in structure refinement and phase analysis.

2.2 New refinement algorithm for ensuring convergence

As a second benefit being of the same importance for practice as the first one, a totally new mathemat-
ical refinement algorithm was developed. In this algorithm, optional boundaries can be introduced for
each parameter. As already mentioned above, the influences on peak shape arising from device and
sample are separated from each other. For that reason and as a result of optional boundaries for all
parameters, it is guaranteed that the BGMN program system does converge in every case! This effect
stands for an essential practical improvement of the Rietveld analysis.

In that sense,

The BGMN program system is the first software enabling totally automatic Rietveld analysis for
routine operation at all.

2.3 Special functions

Some special functions are available for improving the functionality of the program:

Statistical error analysis We inserted a reliable statistical error analysis related to the new refine-
ment algorithm. The software performs a statistical error estimation for each parameter cal-
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culated. These error values are much more reliable for qualitatively correct results than the
R-values often given.

Description and correction of preferred orientation In traditional Rietveld programs, the pre-
ferred orientation of the crystals in the sample was modelled by the March function [12]. In this
function, exactly one preferred orientation can be calculated, e.g. for the crystallite orientation
on a cleavage face. The March function is not suitable to describe orientation distributions.

To overcome the limitations of the March function, the model of spherical harmonics which can
also be applied for samples of sophisticated orientation distributions was introduced. Parameter
correlation and incorrect results can be avoided by defining the suitable order of the spherical
harmonics and by automatic reduction of the chosen model depending on the errors of previous
refinement steps.

Real structure functions The new profile model also includes possibilities to describe microstruc-
tural models. Having isolated the device’s influence, one receives the pure diffraction pattern of
the sample. From here, a physically based microstructural model to describe individual broad-
ening of lines may be used. One can apply this model for each phase separately and even for
anisotropic behaviour. The program is able to calculate crystallite size and microstrain sepa-
rately. Some tools exist to formulate models for bimodal size distribution or for different types
of stacking faults.

Molecular crystals (rigid bodies) Functions describing lattice positions, which are placed by
molecules instead of atoms were introduced. In cases of molecules, rotational parameters and
translational ones are available. Based on the functions for molecules, modifications of valency
angles, torsion around bondings as well as stretching/compressing within molecules may be
defined.

Free programmability If the functions integrated are not sufficient to solve the special problem, new
parameters and dependencies may be defined by means of the formula interpreter as integrated
in the program. This way, it is easy to describe parameter constraints which are not part of
the standard program capacity (e.g. between different atomic positions). It is also possible
to formulate dependencies for individual line broadening and shifting. Doing so, much more
complicated disorder than only size/strain may be described.



Chapter 3

Installation

3.1 Hardware and software requirements

Due to the sytem-indepedent software development, BGMN and its GUI BGMNwin runs on many
Windows and Linux systems. BGMN/BGMNwin demand for only 10 MByte hard disk space (plus
user data space) and typical 20 MByte RAM (plus system space) for typical laboratory data. Processor
speed should be as good as possible, multicore/multiprocessor PC’s are welcome (and may speed up
BGMN in multithreaded mode).

3.2 Installation of BGMN

Here, the installation of BGMN/BGMNwin for Windows will be explained. For other operating
systems, read the installation instructions on the distributed CD.

At first, you must have a copy of an up-to-date JAVA runtime available. Attention: Nowa-
days, Windows systems come with a Java plugin for the Internet Explorer (and, maybe, for
Netscape/Mozilla/Firefox or other browsers). This is not sufficient. You may check this by open-
ing a (black) DOS-window on your Windows system and typing
java -version
If a version number is printed, all is OK. At least, you need a Java runtime 1.3.0. Java runtimes are
available from http://java.sun.com.

Having Java installed properly, start bgmninstall. This will set up the BGMN/BGMNwin pro-
gram. All programs and data as necessary for running BGMNwin will be installed. bgmninstall
checks for the Java version and terminates if no Java is installed (or is not accessible).

3.3 Installation of RasMol

RasMol [26] is a program for graphic representation of molecules. It was developed at the Edinburgh
university and can be downloaded at http://www.umass.edu/microbio/RasMol
(free of charge). The program is installed by calling the self-unpacking
file. The full manual text is available either in postscript or HTML format at
http://www.umass.edu/microbio/RasMol/distrib/rasman.htm.

RasMol processes molecule files in the format of the Brookhaven protein data base (∗.pdb), an op-
tional output format of BGMN. The molecules can be displayed and rotated in different modes and
colours. Results can be printed. File output in PostScript format or bitmap output (∗.gif, ∗.bmp etc.)
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is possible.

To get the unit cell represented correctly, RasMol for Windows 2.6 Beta 2 is supposed. This version
has a bug when processing the y screen coordinates. As a result of this error, the unit cell is mirrored
whereby the sense of screwing of the molecules could be inverted.

3.4 Installation of ORTEP-3 for Windows

ORTEP-III [8] stands for a program generated at the Oak Ridge National Laboratory. ORTEP-
III was developed to represent the thermal vibration ellipsoids. The software is available as FOR-
TRAN source code for different computer levels and operating systems. It has a specific input
format tailored for the crystal structures. To be used with BGMN, this structure file must be
created manually. For the program and installation instructions see the ORTEP-III homepage
http://www.ornl.gov/ortep/.

Since the beginning of 1997, a beta version of ORTEP-3 for Windows
(http://www.chem.gla.ac.uk/˜Louis/ortep3) is available. This version includes
interactive graphic representation and is able to read the ShelX output files of BGMN (extension
∗.res). That means you don’t have to program in the typical ORTEP-III data format. The program
only runs under Windows 3.1 and Windows 95, but not under Windows NT.

Load the program as packed file ortep3.zip from the homepage listed above. Installation instructions
are given in this file.

3.5 Installation of PowderCell

PowderCell [18] is a free program for displaying crystal structures and calculation of powder patterns.
Furthermore, the program reads different types of structure files and can write them into BGMN ∗.str
structure description file. PowderCell also enables the transformation of spacegroup settings and cell
choices as well as the recalculation of anisotropic into isotropic temperature factors. The program can
be obtained from http://www.ccp14.ac.uk/tutorial/powdcell.



Chapter 4

User’s Guide

Here, we describe the general functionality of the BGMNwin package. As an introduction, see figure
4.1:
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Figure 4.1: Overview of the BGMNwin functionality

Let’s have a look at an example1 to explain functionality and use of the BGMN program system.
The example describes a refinement of a single phase, measured in conventional Bragg-Brentano
geometry.

4.1 Modelling of goniometer function by raytracing

The goniometer function is modelled in two steps to avoid time-consuming calculations of one and
the same function.

1Anglesite (PbSO4), measurement data of the Rietveld Round Robin [13]



8 4 User’s Guide

Step 1: Geometric profile estimation at discrete angular positions

Open BGMNwin and chose

File→Open Control File

Browse to the PBSO4\ringverz.sav file. Open it:

See also Appendix B.1.

The theory of this step is explained in detail in chapter 5.5.

For this example, we are using the common Bragg-Brentano geometry. Therefore, we determine the
geometric profile function by raytracing.

The profile function of an ideal, thin sample at discrete angular positions is calculated from geometric
data of the X-ray tube, the goniometer and the detector. In the first stage the profile functions are
determined by means of a raytracing algorithm.

Exemplary goniometer fundamental parameters:

• Measuring circle radius 173 mm
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• Fine focus X-ray tube with optical focus 8 mm × 0.04 mm

• Primary collimator 0.5×4.45o axial divergence angle

• Divergence slit 1o

• Sample dimensions of 10 mm × 20 mm

• Secondary collimator 0.5×4.45o

• Detector slit 0.2 mm × 15 mm

• Graphite secondary monochromator (distance to the measuring circle 51 mm)

For detailed description of geometry parameters see Appendix A.1, B.1.

The anti-scatter slit does not limit the beam path. For that reason the slit is not required for calculation.

The profile function is computed at the following angle positions 2Θ:

• 10o, 14o, 20o, 28o, 40o, 65o, 90o, 120o, 135o, 150o, 160o

For carrying out the calculation, the control file ringverz.sav (see example in appendix) was written.
Start the calculation by selecting

Run→Geomet

browse to the PBSO4\ringverz.sav file and press OK. The calculation needs some minutes depend-
ing from the CPU frequency. On screen, you can follow the angular positions of calculated profile
functions. As a result, the file ringverz.ger containing the calculated profile parameters is generated.
ringverz.ger is a text file which is needed for the second step.

Step 2: Interpolation of goniometer function by the program MAKEGEQ

Again, edit the ringverz.sav file. See Appendix B.1. In this second step additional profiles are inter-
polated between the individual profiles computed in step 1 in a procedure demanding for a lot of time.
In the example the interpolation was executed between 10 and 160o at variable increments. At a 2Θ
angle of 90o, the step size as given by the variable WSTEP is 2o. This is the meaning of the following
lines in the ringverz.sav file:

WMIN=10
WMAX=160
WSTEP=2*sin(zweiTheta*pi/180)

Thus, the program aautomatically generates variable increments for interpolation of the profiles. Such
a procedure is more suitable than constant increments of e.g. 0.5o.

If you know the approximate value of the sample’s attenuation coefficient, you can also consider the
profile deformation as a result of the X-rays penetrating the sample. Transmission effects in the case
of thin samples can also be considered here. In the actual example, the penetration effect can be
ignored because of the height absorption of PbSO4.

The calculation can be done by using the control file ringverz.sav of the first step, extended by the
parameters for angular range and penetration depth/sample thickness. Please select

Run→MakeGEQ

browse to the ringverz.ger file and press OK. As a result we obtain the binary file ringverz.geq in-
cluding the interpolated profiles. This file contains all geometric profile information as necessary for
the Rietveld refinement.
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Display of calculated profiles

The device profile is displayed by

Tools→Show Device Function

Browse to the ringverz.ger file, press OK and wait some seconds. You may select different 2Θ angles
by moving the slide on the bottom of the device window. You may zoom in/out using the left/right
mouse button:

The geometric profile is shown purely, not taking into account the wavelength distribution. The
intensity distribution around the ideal angle is represented. Asymmetric tails and the shift of the
maximum to a lower angle can be seen clearly.

4.2 Input of sample structure data

For Rietveld analysis, the crystal structure models of the individual phases being part of the sample
must be known. For example, the crystal structure of anglesite (PbSO4) is described as follows:
Select

File→Open Structure File ,

browse to the PBSO4\pbso4.str file and open it:
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Structure data must be prepared in ASCII text files with the extension ∗.sav.

First part: Define lattice and all phase-specific parameters

Phase name, lattice constants, real structure parameters (B1, k1 and k2), isotropic or anisotropic scale
(in the case of available preferred orientations) and maybe further global parameters are specified in
the first part of the pbso4.str file. Comments may be inserted at the end of every line beginning with
//.

The PHASE parameter stands for the name of this compound. This name appears during program
output. When missing, the name of the structure file will be used.

Specify the spacegroup number or the Hermann-Mauguin symbol:

SpacegroupNo=62

Note that different settings or choices of origin may exist for the same Hermann-Mauguin symbol.
For details see A.4, section “structure file”. All parameters to be refined are added by PARAM=. The
name of the parameter is followed by the start value for refinement calculation, e.g.

PARAM=A=0.85

For default, the SI unit nm is used for program calculations. If you want to use Å instead of nm,
change the unit by UNIT:

UNIT=ANGSTROEM

Subsequently lattice constants, widths and Debye-Waller-factors are computed in Å.

To increase the robustness of calculation and to avoid incorrect minima it is often useful to set param-
eter restraints. Insert limits by the character “ ” followed by a lower limit value or by “ˆ” followed by
an upper limit value. For notation see the following example of a lattice constant:

PARAM=A=0.85_0.8ˆ0.9

The identifiers A, B, C, ALPHA, BETA and GAMMA denominate the lattice constants in the prede-
fined manner. You may ignore input of these parameters if B or C are equal to A or if the angles are
90o or 120o caused by the spacegroup symmetry. Maybe additional lattice constants will be ignored
in the case that the spacegroup involves some special constraints for the lattice constants. Supposing
e.g. a cubic lattice, the input PARAM=B=... would not give any effect.
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The GEWICHT parameter (scale factor) must also be specified. GEWICHT quantifies the phase’s
weight fraction in the sample2. Starting value may be zero:

PARAM=GEWICHT=0_0

The lower boundary results from physical reasons to avoid a negative parameter.

In practice the phases are characterized by line broadening as a function of crystallite size and of
microstrain. The width parameters B1 and k1 are introduced for those ratios of crystallite size broad-
ening appearing in each case:

PARAM=B1=0_0

B1 cannot be negative. In the case of very large crystallites B1 converges to zero.

PARAM=k1=0_0ˆ1

The k1 boundaries are founded mathematically. Small k1 values correspond to a wide distribution of
crystallite sizes and high k1 values a narrow one.

Microstrain broadening is considered by k2:

PARAM=k2=0_0

k2 is the square of the value for microstrain “rms”.

The definition of the lattice and the phase-specific parameters is finished now. But we still need some
information about the atoms or ions inside the unit cell.

Ongoing lines: Define atoms inside the asymmetric unit

Beginning with the first occurence of

E=

the atoms3 inside the unit cell are characterized. The number of atoms is not limited.

As a necessary input identify the element in capital letters. Write for instance:

E=PB

Furthermore specify its position in the unit cell. Define the Wyckoff position:

Wyckoff=c

Determine the free x, y and z coordinates as demanded by the Wyckoff position in lower case letters.
If necessary, refine these coordinate positions as parameters, e.g.

PARAM=x=0.19_0.16ˆ0.22

As learnt from experience, it is useful to specify lower and upper boundaries.

You can also introduce the parameter TDS for the Debye-Waller-factor, whereas TDS stands for
“thermal-diffuse scattering”. Introduce TDS depending of the atom:

PARAM=TDS=0_0

default unit is nm2, exceptional if UNIT=ANGSTROEM is set.

Structure description is finished after having edited all atoms.

2The parameter GEWICHT is designated as a scale factor like in other Rietveld programs, but related to the molar
mass of the structure. It also may contain information for the correction of the preferred orientation.

3“Atoms”: always also stands synonymously for ions.
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4.3 Refinement procedure

Control file

The refinement calculation is controlled by a ∗.sav file which contains information on the device,
measurement data, involved phases and global parameters. In cases of missing entries, the program
generates reasonable default values.

In BGMNwin, select

File→Open Control File

browse to the pbso4.sav file and open it:

The following items are necessary:

Specify the device function calculated before:

VERZERR=ringverz.geq

Specify the file of measuring values in the APX-63 ASCII (∗.val):

VAL[1]=pbso4.val

BGMN also accepts old versions of both the DiffracAT (∗.raw) or the APD (∗.rd) binary format, or
two versions of the GSAS ∗.gsa format: the STD and the ESD variants. In the case of GSAS fils, the
wavelength must be set either by

LAMBDA=

or by
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SYNCHROTRON=

in the ∗.sav file. In case of other file formats the wavelength information is taken from the data file
itself.

Please pay attention that the preselected time must be transferred correctly when converting other
formats into the APX-63 format. These data are absolutely necessary for calculation of the weights
for optimization and determination of errors (computation procedures).

Set the polarisation factor when applying a graphite secondary monochromator:

pi=2*acos(0)
POL=sqr(cos(26.6*pi/180))

The pi constant is required to convert the 2Θ monochromator angle of 26.6 degs into a radian scale.

Specify the Structure to be refined:

STRUC[1]=pbso4.str

Define the output of the result structure in structure file format (optional):

STRUCOUT[1]=pbso4.sto

Result structure in atomic co-ordinates in the PDB file format (optional):

PDBOUT[1]=pbso4.pdb

Result structure in Cartesian co-ordinates in the RES file format (optional):

RESOUT[1]=pbso4.res

Output list including all global parameters and structure parameters, text output:

LIST=pbso4.lst

Output file of all peak and background parameters for further processing as table:

OUTPUT=pbso4.par

Output of a diagram for observing the pattern fitting during and after refinement:

DIAGRAMM=pbso4.dia

Global parameters for zero offset (EPS1) and correction of the sample displacement (EPS2) using
initial values:

PARAM[1]=EPS1=0_-0.002ˆ0.002
PARAM[2]=EPS2=0_-0.002ˆ0.002

Protocol line corresponding to each step of iteration:

PROTOKOLL=Y

Now the refinement calculation can be started.
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Start and execution of calculation

Starting the refinement calculation is possible after having performed the calculation of the device
function and having input the structures and the control file. It is recommended to put all files which
refer to a specific problem into a separate subdirectory. Start the calculation in this subdirectory by
selecting

Run→BGMN

browse to the pbso4.sav file, select the item “Show diagram during calculation” and press OK.

The calculation has started and some information is displayed in a text a window. If an output pro-
tocol was demanded by PROTOKOLL=Y, then the iteration protocol is visible in this window. In the
protocol line the first column is the number of the iteration step. The second column stands for the
weighted least squares sum. For a good iteration the 3rd value will regularly slow down until there
will be no change on the second value, the 4th value will be a small positive number deeply below 1.0
(regularization) and the 5th value will be instantly 1.0 (generalization).

If a diagram was demanded by DIAGRAMM=... then a graphic window opens. It shows the pattern
data, the refined curves and background. You may zoom into the window and select some other
features. The “Calculated Profiles” menu can be used display individual phase patterns. With the
“Database Lines” menu, the line positions all structure files stored in the structures subdirectory of the
BGMN installation directory can be displayed. This tool is foreseen for checking the completeness
of phase identification.

4.4 Output of results

List of results

After successful iteration, the result list (pbso4.lst file) is created and immediately shown in a result
window:
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Rietveld refinement to file(s) pbso4.val
BGMN version 4.0.15, 6001 measured points, 384 peaks, 36 parameters
Start: Sun Sep 21 19:09:03 2008; End: Sun Sep 21 19:09:40 2008
31 iteration steps

The R values obtained as a result of fitting:

Rp=6.12% Rpb=9.49% R=6.11% Rwp=7.21% Rexp=5.37%
Durbin-Watson d=1.13
1-rho=0.639%

Determined global parameters and associated stochastic errors:

Global parameters and GOALs

****************************
EPS1=0.002796+-0.000088
EPS2=-0.002620+-0.000084

Determined parameters and their statistical errors for the refined structures:

Local parameters and GOALs for phase PbSO4

******************************************************

Space group:

SpacegroupNo=62
HermannMauguin=P2_1/n2_1/m2_1/a

X-ray density in g/cm3:

XrayDensity=6.330
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Phase specific R-value:

Rphase=6.87%

Unit used for all data inside this structure description (e.g. lattice parameters, distances, size broad-
ening and temperature factors):

UNIT=NM

Lattice constants in nm:

A=0.847625+-0.000023
B=0.539600+-0.000014
C=0.695664+-0.000019

Physical peak width parameters (B1 in 1/nm, k1 non-dimensional, k2 in 1/(nm2)):

B1=0.002520+-0.000037
k1=0
k2=0.0000000655+-0.0000000075

Scale parameter:

GEWICHT=0.11191+-0.00038

Determined parameters and associated stochastic errors for refined atomic positions:

Atomic positions for phase PbSO4
---------------------------------------------

Short data for atomic position:

4 c 0.1880 0.2500 0.1673 E=(PB(1.0000))

Results for atomic position parameters each with random error:

x=0.187995+-0.000063
z=0.167293+-0.000091
TDS=0.01624+-0.00013

Results of further atomic positions:

4 c 0.0643 0.2500 0.6847 E=(S(1.0000))
x=0.06428+-0.00036
z=0.68471+-0.00047
TDS=0.00991+-0.00061

4 c 0.9074 0.2500 0.5959 E=(O(1.0000))
x=0.90737+-0.00086
z=0.59587+-0.00097
TDS=0.0137+-0.0018

4 c 0.1884 0.2500 0.5401 E=(O(1.0000))
x=0.18836+-0.00094
z=0.5401+-0.0012
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TDS=0.0128+-0.0016

8 d 0.0803 0.0293 0.8110 E=(O(1.0000))
x=0.08027+-0.00058
y=0.02928+-0.00079
z=0.81096+-0.00082
TDS=0.0127+-0.0011

The output may vary somewhat depending on the computed parameters and the number of phases.

Result representation

If you have used the pbso4.str entry

STRUCOUT[1]=pbso4.sto

to store the refinement results of the PbSO4 structure in the specified file pbso4.sto, then a copy of
the pbso4.str structure file is created. In this new file, the initial parameter start values are replaced by
the results of the refinement. If necessary further calculation can be done without changing the initial
structure file.

If the entry

PDBOUT[1]=pbso4.pdb

exists in the control file, the refined structure is written into a file in the “Brookhaven Protein Database”
(PDB) format in Cartesian co-ordinates. RasMol is an efficient tool for graphic representation and
printing in this file format. You may find useful a line containing Pack=Y in the structure file for
correct representation of the unit cell in RasMol.
The structure file format of the widely used program ShelX is also available for display. Create a
structure file in the ShelX format by the entry

RESOUT[1]=pbso4.res

in the pbso4.sav file. Such structure files may be read by PowderCell and other programs for display.

Peak list

If information on individual peaks is required, simply select

Tools→Show Peak List

, browse to the PBSO4\ringverz.sav file and press OK. This creates a table of all peaks fitted in the
measuring range:
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The columns of the table are:

2 Theta
angle of the peak in o (weighted average of Kα1 and Kα2)

Int intensity in cps×o

% normalized intensity (the strongest peak corresponds to 100%)

d lattice plane distance of the reflection in nm

1/d inverse lattice plane distance in nm−1

b1 Cauchy width of the sample function (Lorentzian)

b2ˆ2 Cauchy square width of the sample function (squared Lorentzian) in nm−2. The sample
function is a convolution product of a Lorentzian- and a squared Lorentzian function (see
section 5.5).

PHASE phase identifier, corresponds with PHASE=... in the ∗.str structure file

H multiplicity of the lattice plane

h, k, l
Miller’s indices of the peak, each a representative for peaks equivalent according to sym-
metry
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TEXTUR preferred orientation correction factor which describes the intensity difference from the
isotropic distribution. Specified for anisotropic scales only. This factor corresponds to the
inverse pole figure at the reflection position.

F absolute value of the structure amplitude |F|

4.5 Improvement of results

Edit pbso4.str again. You may change the file for creating a more complex starting model. Typical
examples of more complex parameters are:

Preferred orientation

In the case of preferred orientation the scale parameter has to be specified in different way, e.g.

GEWICHT=SPHAR2

Note that the specific keyword SPHARx is introduced to define a positive definite function holding
the crystal’s symmetry.

Regarding the PbSO4 example, the result is influenced insignificantly by introducing a simple de-
scription of preferred orientation by SPHAR2. The Rwp value goes down from 7.44% to 7.28%.
Obviously, the sample has been prepared almost without texture.

Anisotropic peak width

Anisotropic crystallite size and/or anisotropic microstrain may occur. The program is able to cope
with both cases via integrated functions.

To calculate anisotropic crystallite sizes the following input is sufficient:

B1=ANISO or B1=ANISOLIN

Subsequently the program automatically generates a set of parameters for the determination of the
Lorentzian peak widths depending on the lattice direction.

Supposing anisotropic microstrain as additional impacts, write in pbso4.str

k2=ANISO or k2=ANISOSQR

In this case an anisotropic parameter set for squared Lorentzian peak widths is created. This calcu-
lation demands for sufficiently precise measurement data. For further description of the anisotropic
micro strain modelling by a tensor of rank 4 see Chapter 10.

Having introduced anisotropic widths B1, the Rwp value goes down from 7.44% to 7.37%. Aniso-
tropic microstrain cannot be evidenced. Note that the isotropic broadening resulting from microstrain
is very small anyway.

Anisotropic temperature factor (Debye-Waller-factor)

The program also provides an option to consider anisotropic temperature factors by

TDS=ANISO
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instead of

PARAM=TDS=0_0

for each atom in the ∗.str file.

Thus a suitable parameter set is created automatically in a way similar to anisotropic peak widths.
But the calculation of anisotropic temperature factors demands for a data set of sufficient accuracy
and an angular range being as large as possible. Such data set is necessary to reduce correlation, e.g.
with the parameters of the preferred orientation.

Introduce an upper boundary for the isotropic initial iteration to avoid parameters for anisotropic
temperature factors whose large values make no sense, for example:

TDS=ANISOˆ2.5

This boundary is an isotropic Debye-Waller-factor. The relationship between the TDS parameters and
the common inputs for B and/or U is described in chapter “Theory”, section “Temperature factors”.

4.6 Calculation example

The following calculation includes all the improvements mentioned above (weak preferred orienta-
tions are considered by SPHAR2, anisotropic width B1 and anisotropic temperature factors TDS for
all atoms). The new output results are obtained for PbSO4:

Rietveld refinement to file(s) pbso4.val
BGMN version 4.0.15, 6001 measured points, 384 peaks, 71 parameters
Start: Sun Sep 21 19:22:53 2008; End: Sun Sep 21 19:24:31 2008
73 iteration steps

Rp=5.63% Rpb=8.69% R=5.43% Rwp=6.53% Rexp=5.36%
Durbin-Watson d=1.34
1-rho=0.523%

Global parameters and GOALs

****************************
EPS1=0.002794+-0.000076
EPS2=-0.002621+-0.000072

Local parameters and GOALs for phase PbSO4

******************************************************
SpacegroupNo=62
HermannMauguin=P2_1/n2_1/m2_1/a
XrayDensity=6.330
Rphase=5.97%
UNIT=NM
A=0.847627+-0.000019
B=0.539602+-0.000013
C=0.695668+-0.000016
k1=0
k2=0.0000000761+-0.0000000070
GEWICHT=SPHAR2, MeanValue(GEWICHT)=0.111878
B1=ANISOLIN, MeanValue(B1)=0.00247611, sqrt3(det(B1))=0.00236677
Atomic positions for phase PbSO4
---------------------------------------------

4 c 0.1879 0.2500 0.1671 E=(PB(1.0000))
x=0.187883+-0.000059
z=0.167078+-0.000090
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.00403, 0.00000, 0.00033 U[i,j]=(0.0001467, 0.0000000, 0.0000099

0.00000, 0.01856, 0.00000 0.0000000, 0.0002738, 0.0000000
0.00033, 0.00000, 0.00781) 0.0000099, 0.0000000, 0.0001915)

4 c 0.0636 0.2500 0.6847 E=(S(1.0000))
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x=0.06362+-0.00035
z=0.68466+-0.00048
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.00274, 0.00000, 0.00063 U[i,j]=(0.0000996, 0.0000000, 0.0000187

0.00000, 0.00774, 0.00000 0.0000000, 0.0001142, 0.0000000
0.00063, 0.00000, 0.00471) 0.0000187, 0.0000000, 0.0001155)

4 c 0.9079 0.2500 0.5967 E=(O(1.0000))
x=0.90794+-0.00083
z=0.59675+-0.00097
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.00429, 0.00000,-0.00455 U[i,j]=(0.0001560, 0.0000000,-0.0001359

0.00000, 0.02074, 0.00000 0.0000000, 0.0003059, 0.0000000
-0.00455, 0.00000, 0.00902) -0.0001359, 0.0000000, 0.0002212)

4 c 0.1920 0.2500 0.5442 E=(O(1.0000))
x=0.19196+-0.00092
z=0.5442+-0.0013
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.00328, 0.00000, 0.00693 U[i,j]=(0.0001195, 0.0000000, 0.0002072

0.00000, 0.01349, 0.00000 0.0000000, 0.0001990, 0.0000000
0.00693, 0.00000, 0.01519) 0.0002072, 0.0000000, 0.0003724)

8 d 0.0792 0.0289 0.8075 E=(O(1.0000))
x=0.07917+-0.00057
y=0.02894+-0.00075
z=0.80752+-0.00078
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.00265,-0.00072,-0.00059 U[i,j]=(0.0000963,-0.0000167,-0.0000178

-0.00072, 0.01145,-0.00252 -0.0000167, 0.0001689,-0.0000480
-0.00059,-0.00252, 0.00446) -0.0000178,-0.0000480, 0.0001094)

Pay attention to the low error values of the individual parameters (lattice constants, atomic coordi-
nates) evidencing the high model quality with respect to the crystal structure. Compared with the
results of the Round Robin Test for PbSO4 [13] the calculation could be confirmed as correct.



Chapter 5

Theory

This chapter explains the fundamental background of the Rietveld method as used to implement the
Rietveld method by the BGMN program.

Cross-references are inserted to illustrate the relationships of the formula parameters to those param-
eters being mentioned in the chapters before or in the references. As a rule, if there is no explanation,
the corresponding parameter is determined automatically in the program.

5.1 Optimization method

The Rietveld method is an optimization procedure to fit a model of the examined sample to a measured
diffraction pattern. A parameter set is used for fitting. Hereby the least squares sum is minimized as
follows:

M∑
i=1

wi (yi − yic)
2 (5.1)

with

M Pattern length (number of data points).

yi Measured intensity at pattern data point i.

yic Computed intensity at pattern data point i.

wi Weight at pattern data point i, commonly Ti · y−1
i

Ti Counting time as preselected for pattern data point i

As to be seen from the following explanations, the parameters of the crystallographic model are
mostly non-linear. For physical reasons, their parameter ranges are limited. Consequently, the pro-
gram has to solve a non-linear optimization problem with constraints and restraints

The non-linear optimization algorithm of BGMN was developed carefully. The routine is based on
an algorithm given by Schwetlick [27]. All first derivatives demanding for extremely high CPU time
(these are the derivatives of the diagram intensity according to the peak and background parame-
ters) are determined analytically. Derivatives from peak- to structure parameters are approximated
by difference quotients using a formula interpreter which is integrated into BGMN. In contrast to
Schwetlick [27], the following special features are implemented:

1. During calculation the generalization and regularization are kept variable. The regularization
parameter for the n + 1th step is pre-estimated from the deviation of the descent point of step n
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against the ideal parabola according to the approximated Hesse matrix. Consequently, the full
increment γ = 1 can be taken for calculation in most cases.

2. In the central, linear part of the algorithm the RG-CD algorithm described by Sadowski in [25]
replaces the simple method to solve a set of equations through the approximated Hesse matrix.
In its entire version this algorithm allows to integrate as many inequation constraints for linear
parameter combinations as desired. In reality we implemented a simplified version of the type
parameter ≥ lower boundary and/or parameter ≤ upper boundary.

This simplified form allows us to define parameter specific lower and upper boundaries. The algo-
rithm, which may be applied optionally, rather reduces execution time than it makes the calculation
longer. It is an iteration following n steps where n is the number of parameters. The iteration ends
exactly in the minimum. The program terminates the calculation if a refinement step is sufficiently
small. Thus, CPU time is reduced when using a lot of parameters.

5.2 Counting rate on the ith measuring point

The counting rate on the ith measuring point is the sum of the corresponding contributions provided
by all Bragg reflections k from the phases j being part of the sample:

y′
i = ybi +

M∑
j=1

N∑
k=1

SjPjkHjkL|Fjk|2 (5.2)

with

ybi Background counting rate

Sj Scale and/or scale factor; if preferred orientation is available, also depending on k;
Structure file parameter: GEWICHT

Pjk Profile function

Hjk Multiplicity of the reflection k

L Lorentzian plus polarisation factor L =
1+POL cos2 Θjk

sin2 Θjk cos Θjk

POL = 1 without secondary monochromator
POL = cos2 2ΘMonochromator for secondary monochromator with mosaic structure

POL is an entry in the ∗.sav control file.

Fjk Structure amplitude; the structure factor is the square of structure amplitude

M Number of phases

N Number of Bragg reflections of the phase j

5.3 Determination of background

The background profile is fitted by a Lagrangian polynomial of the nth order. The background pa-
rameters (the coefficients of the Lagrangian polynomial) are supposed to be positive. This condition
is necessary but not sufficient for positive definite background. Using a Lagrangian polynomial with
positive definite coefficients guarantees a stable background convergence in practical all cases.
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The polynomial order is determined automatically depending on the angular range. Manual input of
the order is required in very special cases only, (entry into the control file: RU).

Alternatively, you can apply an autonomous background diagram (available externally) for back-
ground fitting. This diagram uses a scale factor as parameter. The necessary entry into the control
file is UNT. Arbitrary increments are permitted for UNT. Nevertheless, pay attention that the angular
range to be fitted is covered.

5.4 Scale and preferred orientation

Supposing an ideal random sample without any preferred orientation (PO), the scale parameter is a
scalar with its quantity proportional to the weight ratio of the phase.

As a rule, samples have almost one, but often a number of POs in each phase. In this case, the weight
content must be estimated from the mean value of the scale parameter.

Advanced Rietveld programs describe POs with the help of spheric harmonic functions. Because they
have to fulfil the symmetry conditions of the crystal structure given by the Laue class, symmetrised
linear combinations of spherical harmonic functions are the basis for sophisticated PO models.

Supposing that the measurement of the polycrystal sample is made on a rotating sample in conven-
tional Bragg-Brentano measuring geometry, the PO correction factor T

(
�h

)
, also called average polar

axis density in the literature, can be conventiently approximated by a finite series of spheric harmonic
functions

T
(
�h

)
= T

(
ϑ�h, ϕ�h

)
=

n∑
�=0,2,4...

�∑
m=−�

a�,mY�,m

(
ϑ�h, ϕ�h

)
(5.3)

where the average polar and azimutal angles ϑ and ϕ describe the direction of the reciprocal lattice
vector �h in a suitable spheric coordinate system.

The coefficients a�,m in equation (5.3) are adjustable parameters. The first term a0,0Y0,0 is angular
independent and, therefore, describes a random orientation of crystallites whereas the other terms
represent the deviation from this ideal case. In X-ray powder diffraction only symmetrised spherical
functions of even order need to be considered because only these functions fulfil the symmetry 1̄ that
is common to all Laue classes (Friedel’s law).

To derive an algorithm that is unique to all Laue classes and to all n, equation (5.3) can be expressed
as

T (ϑ, ϕ) =

3∑
i1=1

3∑
i2=1

· · · 3∑
in=1

G0
i1,i2...inxi1xi2 · · ·xin

rn
(5.4)

whereas xi are three coordinates in arbitrary cartesian coordinates, r is the distance to the zero point√
x2

1 + x2
2 + x2

3 and G0 is a fully symmetric tensor of order n.

There is some linear dependency between cartesian coordinates and the coordinates of the reciprocal
lattice hi. Therefore, after some linear transformation, we get the equation

T
(
�h

)
=

3∑
i1=1

3∑
i2=1

· · · 3∑
in=1

Gi1,i2...inhi1hi2 · · ·hin∣∣∣�h∣∣∣n (5.5)

for some other fully symmetric tensor G of order n.

The number of indepedent components of the tensor G can be greatly reduced by symmetry consid-
erations. If the Ak

ij with i, j = 1 . . . 3 are the transformation matrices of the point group, a tensor Ĝ
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that is invariant to the transformation

Ĝi1,i2...in =
3∑

j1=1

3∑
j2=1

· · ·
3∑

jn=1

Ĝj1,j2...jn
Ak

i1j1
Ak

i2j2
· · ·Ak

injn
(5.6)

for each k has to be found. This expression is written as

Ĝ = AkĜ (5.7)

in a symbolic notation. An invariant tensor Ĝ can easily be constructed applying the Γ1-projection
operator

Ā =
1

m

m∑
k=1

Ak (5.8)

to a non-invariant tensor G
Ĝ = ĀG . (5.9)

Then, the average polar axis density is given by

T
(
�h

)
=

3∑
i1=1

3∑
i2=1

· · · 3∑
in=1

Ĝi1i2...inhi1ji2 · · ·hin∣∣∣�h∣∣∣n (5.10)

The tensor Ĝ can be easily derived using the general positions

Xk =
(
Xk

1 , Xk
2 , Xk

3

)
(5.11)

as given by the International Tables and tabulated in the spacegrp.dat file for the BGMN program.
The matrices Ak

ij are given by

Ak
ij =

∂Xk
i

∂xj
(5.12)

and T
(
�h

)
is easily obtained by a simple numeric algorithm unique to all Laue classes and all orders

n of correction. Thus, BGMN is calculating T
(
�h

)
when demanded for every Laue-class and order,

respectively. For a detailed discussion on this topic see [4]. In contrast, other Rietveld programs apply
the different Γ1-operators to all Laue classes in an analytic form and get a lot of formula, each for
every Laue class and every order of correction n.

For demonstration, table 5.1 gives the number of independent elements of the tensor Ĝ for every order
n until 10 and every Laue class.
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The average polar axis density T
(
�h

)
as given by equation (5.10) has still two shortcomings. First,

it should be positive definite which is not guaranteed by equation (5.10). Therefore, a new average
polar axis density is defined by the non-linear transformation

T̃
(
�h

)
= eT(�h) (5.13)

conserving the symmetry properties.

Secondly, in cases without preferred orientation, the average polar axis density should be identic to
one. This is not guaranteed, neither by T nor by T̃ . Following the common formula for the Rietveld
intensity

I
(
�h

)
= T

(
�h

)
LPS

∣∣∣F (
�h

)∣∣∣2 , (5.14)

we combine T and the scale factor S and call the result non-normalized average polar axis density.
Using T̃ as non-normalized polar axis density, we get a modified formula for the Rietveld intensity. Of
course, following this way, the scale factor S is not available directly as parameter during Rietveld re-
finement. Instead of, it must be calculated as the mean value over all directions of the non-normalized
average polar axis density T̃ .

In some circumstances, especially for phases of low symmetry and low concentration, too sharp pre-
ferred orientations can be computed by SPHAR2. To enable a fitting of the preferred orientation in
these cases too, the assignment GEWICHT=ANISO can be used as an alternative. This statement
introduces a symmetrical matrix which is positively definite. The associated coefficients of the ma-
trix’ preferred orientation are abstracted from its square form hkl. The program guarantees that the
corresponding ellipsoid fulfils the crystal’s symmetry in any case. Depending on the crystal system,
six parameters are fitted maximally.

Automatic reduction of PO/anisotropy models

Complicated PO models (large maximum numbers of spherical harmonics) may cause large errors of
phase contents. Therefore, for small contents, the application of such complicated PO models makes
no sense. The total error including the systematic one will be enlarged and CPU time increases. In
dirty cases, even numerical crashes may occur. Therefore, BGMN switches down automatically the
PO/Anisotropy by comparing the significance of the isotrope scaling factors to the number of free
parameters (see table 5.1). Furthermore, the order of the PO model will be reduced if too few peaks
are in the angular range investigated.

For a structure specific switch off model, please see LIMITx and ANISOLIMIT in Appendix A.

5.5 Profile function

Since the pioneering work of Wilson [30] it is widely accepted that the entire diffraction pattern is a
folding of Λ — the wavelength distribution — , the geometry function G and the sample function P 1.
During a Rietveld analysis the wavelength distribution and the geometry function are constant. The
sample function includes all parameters significant for microstructure.

The special power of the BGMN program is mainly based on the fact that the mentioned components
of the profile function are separated numerically. For that reason, the wavelength distribution Λ
and the geometry function G can be determined before. The Rietveld calculation only deals with
determining the profile parameters depending on the sample. Consequently the refinement procedure
becomes more robust and provides good convergence.

1In the following, a folding between wavelength distribution and geometry function is also called a device function.
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The following section explains the calculation approach of the profile function.

The figure 5.1 is inserted to illustrate the BGMN profile model.

Wavelength distribution

The wavelength distribution can be modelled by a set of Lorentzian functions describing both the
Kα1 and the Kα2 line. Until 1997 data were only available for Cu-anodes. E.g. data given by Berger
[1] were in common use. In [14] data for Cr, Fe, Co and Cu are given. In our opinion (see section
10.2), those data are more accurate compared to [1]. Therefore we recommend to use data cited from
[14]. Additionally our own measurement of the Mo-Kα1,2 doublet is available. It was determined on
a diffractometer with a special super-fine slit arrangement. These data are stored as files cu.lam and
so on and chosen automatically according to the anode material as given in the pattern data file. In
case of synchrotron data, an infinite narrow delta function is chosen by the assignment

SYNCHROTRON=...

Please give the synchrotron wavelength in nm.

Geometry function

The geometric part of a profile is depending on 2Θ. The geometry function is characterized by
fundamental apparatus parameters such as distances, divergence slits, angles etc.

Figure 5.1: Determination of the profile function
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There are two different ways for determination of the geometry function. We prefer, if possible
anyway, the first way “raytracing” as done by GEOMET. The second method “learning profiles” as
done by VERZERR will be described in detail in section 10.3.

Calculation of the geometry function by raytracing

The geometry function is computed by a raytracing method within the program GEOMET. The
procedure has to be carried out for some discrete angular positions covering the 2Θ range to be
analysed. Inside the boundaries made up by the divergence slits, six degrees of freedom for a ray are
randomly chosen in accordance with a commonly used Monte Carlo integration.

The degrees of freedom to be integrated over for calculation of the geometry function are:

• two degrees of freedom in the plane of the tube focus

• axial position in the vertical slit; in the case of a primary collimator, this degree of freedom is
replaced by the inclination in the collimator

• equatorial position in the horizontal slit

• equatorial position in the receiving slit

• axial position in the receiving slit or on the crystal of the secondary monochromator; in case of
a secondary collimator, this degree of freedom is replaced by inclination in the collimator

The scattering position on the sample as well as the position in additional slits are computed, thus
considering further ray constraints. The program computes the angle Θ appearing, if the event would
be recorded. The goniometer axis is situated at the angle Θ0 being different from Θ as a rule. All
successful experiments are classed into a very narrow grid in Θ. Computation is terminated if the
quantity of events in one grid channel is 2/(accuracy)2. This quantity is around 40000 for default
of 0.7% accuracy. For that reason, some million events must be computed per profile. The ratio
of successful events to the total number of events is stored for further evaluation. Subsequently, a
sum of squared Lorentzian functions is used for mathematical modelling of the geometry function
at each angle Θ. Thus, even strongly asymmetric profiles can be modelled as accurate as necessary.
Squared Lorentzian functions are fitted to the peak computed by a Monte Carlo integration. At first
an individual function is inserted. Subsequently further squared Lorentzian functions are added, until
the fit has achieved the accuracy as demanded.

For more accurate profile description, we recommend correcting the raytraced profiles for tubetails.
For details see section 10.2.

Many advanced geometric set-ups (position sensitive detectors, focusing X-ray mirrors etc) man not
be described by raytracing. In such cases, one must use the learnt profiles method as described in
section 10.3.

Interpolation of geometry function

Because the geometric profile is needed for every angular position, the geometric function has to be
interpolated between the angular positions as simulated by GEOMET or deconvoluted by VERZ-
ERR. This interpolation routine is carried out by the program MAKEGEQ. This step is necessary
for any ∗.ger file: Raytracing with or without tubetail correction or learnt profiles.

The profiles calculated by GEOMET are read by the program as input values. Now the interpolation
is started at the preset angle values. For each angle the positions of both envolving profiles are
corrected towards “Maximum around 0”. The positions get scale values according to the situation
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inside the interval of interpolation, the sum of all scales is 1. Following this procedure, the device
function is constructed using point-by-point interpolation with >100 points which are not equidistant.
The point number depends on the accuracy demanded. Following the same approach as GEOMET,
a sum of squared Lorentzian functions is fitted to this asymmetric function until a certain accuracy is
reached.

The profile shape is also influenced by the beam path in the sample. To consider the impact of
the sample most accurately, some corrections of the geometry functions must already be carried out
during interpolation by means of MAKEGEQ:

• penetration depth in the sample

• sample thickness and sample absorption for measurement in transmission

• capillary diameter and absorption for capillary geometry

The corresponding values must be given in the control file for starting MAKEGEQ. Except for the
sample absorption for measurement in transmission, the above mentioned corrections cannot be done
later.

For an incomplete correction of the penetration depth, the EPS3 parameter, which is specified in the
control file, can be fitted during the Rietveld analysis. This parameter stands for the peak shift due to
radiation penetrating the sample but not for the change of the peak shape resulting from it. Note that
EPS3 correlates even with the other angle correcting parameters EPS1 and EPS2. For that reason
the application of EPS3 is not recommended.

Sample function

The sample function includes the contribution of the diffraction by the sample to the measured profile.
Assuming an ideal crystalline sample whose crystallites have sufficient size and quantity, we would
get a sum of Delta functions (each for each reflection) as sample function.

For real samples some line broadening due to crystallite size is to be considered. A Lorentzian
function is taken for each peak of the sample function. This function is determined for each peak in
the following way:

L1 =
1

π

b1

b2
1 + (x − x0)2

(5.15)

with

x0 Peak position 1
d

b1 Peak width, described by crystallite size;
Structure file parameter: B1

In isotropic cases the reflection width is one parameter for all peaks of a phase. In anisotropic cases,
the reflection width parameter, being a function of the Miller indices of the reflection, is represented
depending of the corresponding crystal system. It’s description is performed by six parameters maxi-
mally.

In addition, the diffraction reflections can be widened due to microstrain and similar influences.
The program considers this influence by folding the above introduced Lorentzian with a squared
Lorentzian function:

L12 = L1 ∗ L2 (5.16)
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where

L2 =
2

π

b3
2

[b2
2 + (x − x0)2]

2 (5.17)

with

b2 Width of the reflection, determined by microstrains and crystallite size distribution

and

b2
2 = k1b

2
1 + k2

1

d2
(5.18)

Structure file parameters: k1 and k2
Note that the parameter k2 describing microstrain may also be anisotropic:

k2=ANISO

Taking for example the cubic crystal system, the ellipsoid is degenerated to a sphere. According to a
generalized theory, the anisotropy of the microstrain parameter k2 must be described using a tensor
of 4th stage. The key word ANISO4 was introduced for supporting this function:

k2=ANISO4

In following, the microstrain becomes anisotropic even in cubic crystal systems. The value of the
parameter k1 depends on the width of the crystallite size distribution.

Depending on the crystal system, crystallite size and/or microstrains can also be anisotropic. In this
case a positively definite symmetrical matrix is introduced. The corresponding width parameters are
abstracted from the square of the above mentioned matrix by hkl. The program guarantees that the
associated ellipsoid always has the symmetry of the crystal.

The relationship of the parameters b1 and k1 to the crystallite size is described in [21] as well as in the
following section.

5.6 Mean crystallite size

The computation of the mean crystallite size starts from the distribution of the column length pν(D).
This function was abstracted by Bertaut [5].

I(s) =

∞∫
0

sin2(πDs)

(πs)2

pν(D)

D
dD (5.19)

with

D Length of a column orthogonally to the reflecting lattice plane

pν(D) Volume ratio of such a length fraction.

Let I(s) and pν(D) be normalized to unitary. Using the approach

∂2χ(D)

∂D2
=

pν(D)

D
, (5.20)

we get

I(s) = 2

∞∫
0

cos(2πsD)χ(D)dD (5.21)
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as a result of double partial differentiation.

Equation 5.21 is the Fourier transform of an even function χ(D).

If we identify I(s) with the squared Lorentzain function L12 as used by BGMN, we get the Fourier
transformed function

χ(D) = (1 + 2πb2D)e−2π(b1+b2)D. (5.22)

After double differentiation, we get

pν(D) =
(
4π2

(
b2
1 − b2

2

)
D + 8π3b2 (b1 + b2)

2 D2
)
e−2π(b1+b2)D (5.23)

For a pure crystallite size effect, there must be valid b1 < b2, otherwise the distribution of the column
length of small D values would become negative. For that reason BGMN works with the constraint
k1 < 1. The last mentioned term is also normalized to unitary.

But we want to find out the distribution of crystallite size or the mean crystallite size rather than
distribution of the column length or the mean column length. Consequently we have to assume a
grain shape. In case of spheres with a diameter Dm the distribution of the column length is

pν,sphere =

{
3D2

D3
m

for D ≤ Dm

0 otherwise
(5.24)

as normalized by
Dm∫
0

pv,sphere = 1 . (5.25)

Assuming an arbitrary distribution function ω(Dm) of the sphere diameter, the distribution of the
column length is

pν(D) =

∞∫
D

ω(Dm)
3D2

D3
m

dDm. (5.26)

The lower limit D arises from the fact that spheres of small diameter values Dm do not influence
pν(D). Having divided right and left part of equation by D2 and differentiated against the lower limit,
we get

ω(Dm) =
2

3
pν(D) − D

3

∂pν(D)

∂D
. (5.27)

After differentiation, we obtain

ω(Dm) =

⎛
⎜⎜⎝

4π2

3
(b2

1 − b2
2)D

+8π3

3
(b1 + b2)(b

2
1 − b2

2)D
2

+16π4

3
b2(b1 + b2)

3D3

⎞
⎟⎟⎠ e−2π(b1+b2)D. (5.28)

This term is also normalized to unitary. Using b2 =
√

k1b1 as applied in BGMN we get

D =
4

3πb1

1 + 2
√

k1

(1 +
√

k1)2
. (5.29)

for the volume weighted mean sphere diameter.

BGMN introduces this term as the GrainSize function. In addition we want to determine the relative
width of crystallite size distribution. We find out the relative width by dividing the standard deviation
by the mean value:

ΔD

D
=

√
13 + 52

√
k1 + 7k1

4
√

2(1 + 2
√

k1)
. (5.30)
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Figure 5.2: Relative width of the distribution of the crystallite size as a function of k1

The following figure represents the relative width of the distribution of the crystallite size depending
on the program parameter k1.

Obviously, the range of possible distribution is relatively small. For that reason the calculated param-
eter k1 is mostly situated on the interval boundaries, that is zero or one. As a consequence, this model
is not useful for determination of wide crystallite size distribution functions.

Comparison with microscopic measurements of grain size

For comparison with (electron) microscopic methods the mean sphere diameter as specified in (5.29)
should be replaced by the mean column length

Ds =
1

πb1

1 + 2
√

k1

(1 +
√

k1)2
, (5.31)

that is 3
4

of the mean sphere diameter. Subgrains are often tilted against each other. Therefore the value
obtained for the particles suitable for optical measurement depends on the corresponding measuring
principle: For X- ray methods the determined crystallite sizes are significantly smaller than those
obtained by optical techniques.

5.7 Microabsorption

For single phase samples the attenuation of X-radiation is only determined by the penetration depth
of crystallites to be diffracted.
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However, if the sample consists of more than one phase with different linear attenuation coefficients,
analysis becomes more complicated by microabsorption. The phase with the higher linear attenuation
coefficient attenuates X-radiation predominantly. The problem is even amplified by differing the grain
sizes of the phases in addition to different linear attenuation coefficients. Consequently the content of
that phase with the higher linear attenuation coefficient or the larger particle size will be determined
too low.

If the mean particle sizes of all phases in the sample are known, it is possible in principle to correct
for microabsorption by computation. This was done first by Brindley (1945) [7]. For the intensity
correction he gives the formula

1

Va

∫
Va

e−(μa−μ)x dVa , (5.32)

where x is the length of the X-ray path inside the grain of a volume Va. We approximate this equation:

e−(μa−μ)x ≈ e−(μa−μ)x (5.33)

Following our own investigations for spherical grains, this approximation is justified, because:

• The original Brindley formula (5.32) gives some angular dependence of the correction. E.g.
for D (μa − μ) = 1.0 the exact formula gives a content correction of 2.08 (2Θ = 20o) to 1.92
(2Θ = 140o).

• Our approximation (5.33) gives a angular-independent value of 2.12.

• Conclusion: the error using the approximation is much smaller compared to that one using an
angular-independent Brindley correction.

Therefore we suggest the following formula for the correction of the mass fractions:

e
3
4
μaDa , (5.34)

where μa and Da are linear absorption coefficient, and mean diameter of the a phase, resp.

In common we suggest a GOAL formulation for correcting the scaling factor (mass fraction) of a phase
as following:

GOAL:phasename=GEWICHT*ifthenelse(ifdef(d),exp(d*my*3/4),1)

where d is the mean grain diameter in μm of the ground sample, which may be supported in the main
∗.sav file. BGMN presets the variable my (unit μm−1) which holds the linear attentuation coefficient
of the (compact) phase. In cases of multiple subphases (RefMult> 1), one must use my[1]....

5.8 Structure factor

The structure factor |Fk|2 describes the scattering contribution of all O atoms of the unit cell to the
reflection k.

Fk =
O∑

m=1

pmfm

(∣∣∣�h∣∣∣) e(2πi�h·�rm) (5.35)

with

O Number of atoms in the unit cell
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pm Occupation probability

fm

(∣∣∣�h∣∣∣) Atomic form amplitude

�h Vector of Miller’s indices

�rm Vector of atomic coordinates of atom m

The structure amplitude Fk represents the sum of scattering amplitudes fm of all atoms considering the
corresponding atom phases. The atomic form amplitudes of the atoms most of the ions are provided
as nine-parameter approximations in the file afaparm.dat.

5.9 Temperature factors (Debye-Waller-factors)

Temperature factors are introduced to describe the attenuation of diffracted X-radiation by thermal
motion of lattice elements. This dispersion named as thermal diffuse scattering reduces the diffraction
intensity of the reflection k in comparison to the ideal crystal.

For a first approximation, the thermal diffuse scattering is described by the following modification of
the structure amplitude:

Fk =
O∑

m=1

pmfm

(∣∣∣�h∣∣∣) e(2πi�h·�rm)e−Bm( sinΘ
λ )

2

(5.36)

Bm is the isotropic atomic temperature factor of the atom m. Excluding a factor of 100, Bm corre-
sponds to the TDS entries as set in the the structure file, atomic description lines starting with E=....

For a more accurate description, anisotropic temperature factors may be used. This demands for a
thermal factor as described by positive definite matrices βij, each for each single atom in the unit cell.
Accordingly, the second exponential function in equation (5.36) is replaced by:

e−h2β11−k2β22−l2β33−2hkβ12−2hlβ13−2klβ23. (5.37)

In general, the values of βij depend from the atomic number m in equations (5.35), (5.36). They have
to follow the symmetry conditions of the spacegroup.

Anisotropic Debye-Waller-factors for atoms may be refined by entering TDS=ANISO to the structure
file. The components calculated correspond to the values of βij given in literature, the βij values are
dimensionless.

The program automatically considers the constraints of the space group symmetry. These con-
straints are described by Giacovazzo et al. (1992) on ps. 188 to 190. To increase the robustness
of calculation, an isotropic upper limit B0 can be introduced for anisotropic temperature factors by
TDS=ANISOˆupperlimit.

An isotropic average may be abstracted from the components of the anisotropic matrix βij with a, b, c
and α, β, γ standing for the lattice constants:

B0 =
4

3

[
β11a

2 + β22b
2 + β33c

2 + 2β12ab cos γ
+2β13ac cos β + 2β23bc cos α

]
(5.38)

For the Uij matrix elements, which are also available in literature, the following approximation is
valid:

B0 =
8π2

3

[
U11 sin2 α + U22sin

2β + U33 sin2 γ + 2U12 sin α sin β cos γ
+2U13 sin α sin γ cos β + 2U23 sin β sin γ cos α

]

1 + 2 cosα cos β cos γ − cos2 α − cos2 β − cos2γ
(5.39)
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Transformation for isotropic temperature factors is

B = 8π2U. (5.40)

Attention:

Since the values B, U and Uij given in literature have the dimension Å2, these values must be divided
by 100 before being applied as TDS whose unit is nm2. Exception: βij values are without dimension!

5.10 Neutron powder diffraction

Neutron powder diffraction is quite similar to X-Ray powder diffraction, but there are some specific
features [16]:

• Neutrons as used for diffraction are, in general, thermic neutrons, they must be slowed down
using a “moderator” as involved in a nuclear reactor. There may be other sources than nuclear
reactors, but a moderator is mandatory.

• X-Rays are scattered by atomic shell electrons, neutrons by the nucleus.

• The atomic form factors will be replaced by the coherent bound neutron scattering lengths b,
which (in most cases) simply are angle-independent constants.

• In distinction to atomic form factors, scattering lengths b change non-monotonic depending
from atomic number. They may become negative, and they are different for different isotopes
of a given atomic number.

• Neutrons own a magnetic moment, X-Rays not. Therefrom, Neutrons may interact with elec-
tronic magnetic dipoles of magnetic structures.

• In general, the linear absorption of neutrons is much weaker compared to X-Rays: much larger
samples may be observed.

In principle, there are two different types of neutron powder diffraction facilities: CW (Constant
Wavelength) and TOF (Time Of Flight). BGMN is able to handle CW patterns, only.

For some elements/isotopes, there is strong absorption of thermic neutrons: Cd, Sm, Gd, Eu. Some
isotopes of Cd, Sm, Gd, Eu show neutron resonances [22] at thermic neutron energies. As well known
from X-rays, there will be an imaginary part of b, and b will become strongly energy-dependent.
These neutron resonances are part of the file bcoh.dat. Data in bcoh.dat are valid down to neutron
wavelengths of 0.04nm (0.4Å). Below that limit, dozens of additional neutron resonances for elements
with atomic number Z ≥ 35 will occur, and the content of bcoh.dat will become insufficient.

Magnetic scattering on shell electrons will not be handled automatically by BGMN. You may describe
that by using user calculated structure amplitudes, which will be switched on by setting FMult to a
positive integer. Thus, you must provide a formula for the structure amplitude F including magnetic
scattering.

The thermic motion of the nucleus may differ from the thermic motion of the shell electrons. In most
cases, neutron diffraction will give different temperature factors compared to the X-Ray ones.
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5.11 Quality parameters

Global R values

The Rietveld method is an optimization algorithm. The difference between measured and calculated
diagrams is taken as optimization criterion. The weighted residual square sum Rwp is introduced to
evaluate the fitting quality:

Rwp =

⎡
⎢⎢⎢⎣

M∑
i=1

wi(yi − yic)
2

M∑
i=1

wiy2
i

⎤
⎥⎥⎥⎦

1
2

, (5.41)

with

M Pattern length (number of data points).

yi Measured intensity at pattern data point i.

yic Computed intensity at pattern data point i.

wi Weight at pattern data point i, commonly Ti · y−1
i

Ti Counting time as preselected for pattern data point i

Smaller R values stand for better fitting. But note that the R value is only a mathematical criterion.
Assume that the diagram has a continuously high background rate. In that case a small R value may
also by achieved although the fitting of the crystallographic model is relatively bad. This effect results
from the fact, that the background fitting is also part of the calculation. For that reason R values can
only be compared with each other, if they refer to the same diagram.

Rexp is the possible minimum value for Rwp (supposing ideal fitting):

Rexp =

⎛
⎜⎜⎜⎝ M − P

M∑
i=1

wiy
2
i

⎞
⎟⎟⎟⎠

1
2

(5.42)

with

P Number of independent refined parameters

Rexp is used for comparison with Rwp, but it is also a criterion for measurement quality. Too high
values may result from insufficient counting statistics.

Attention: Having too much parameters refined, Rexp decreases. Hence, the gap between Rwp and
Rexp may rise.

For easy comparison with the results found by other Rietveld programs, the following R values are
calculated in BGMN:

• Profile-R Rp:

Rp =

M∑
i=1

|yi − yic|
M∑
i=1

yi

(5.43)

Resulting from the missing weighting factor, the Rp value is less expressive than Rwp.
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• Profile-R Rpb, corrected background:

Rpb =

M∑
i=1

|yi − yic|
M∑
i=1

|yi − ui|
(5.44)

with

ui Computed background value i.

Phase-specific R values

The Bragg R value RB is especially interesting under the aspects of cristallography. This value is also
desirable for comparison with the results of structural analysis by single crystal methods.

RB is based on the integral intensity values concerning all reflections of a phase according to:

RB =

M∑
j=1

|Ij − Ijc|
M∑

j=1
Ij

(5.45)

with

Ij Measured intensity of diffraction reflection j

Ijc Computed intensity of diffraction reflection j

In Rietveld analysis only the computed intensity values are available. In fitting the measured reflection
intensity values are not important at all. They cannot be determined accurately, e.g. by defolding. For
that reason these values must be estimated according to the phase ratios.

The methods implemented in various programs to estimate the measured intensity values are not com-
parable. Sometimes these methods are evidently incorrect ([15]). Even the assumption of Rietveld,
that the calculated phase rates are related to the measured intensity on each measuring point in the
same way as the real rates, is only valid for sufficiently separated reflections but not for those ones
being strongly overlapped. RB would be found best by defolding the entire diffraction diagram with-
out structural information. Nevertheless all the other parameters found as a result of refinement such
as lattice constants should be included. Reflection intensity values would be the only free parameters.
For less symmetric phases the parameter quantity could range from hundreds to thousand linear pa-
rameters. Note that the CPU time for determination of RB may easily be doubled by considering the
constraint “Parameter ≥ 0” which is an essential rule founded by physics!

For that reason BGMN determines a new phase-specific parameter named as Rphase. This parameter
is similar to Rwp.

Rphase =

⎡
⎢⎢⎢⎣

M∑
i=1

wi(yi − yic)
2 yphase,i

yi

M∑
i=1

wiy2
i

yphase,i

yi

⎤
⎥⎥⎥⎦

1
2

=

⎡
⎢⎢⎢⎣

M∑
i=1

wi(yi − yic)
2 yphase,i

yi

M∑
i=1

wiyiyphase,i

⎤
⎥⎥⎥⎦

1
2

(5.46)

with

yphase,i Component of intensity of the phase at measuring point i.

Consequently Rphase scales the deviations on each measuring point against the phase ratio related to
this point. A high Rphase value stands for bad fitting of the associated phase. This information is
especially useful for quantitative phase analysis.
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Quality parameter 1 − ρ

To overcome the limits of common global R values, we introduced the quality parameter 1 − ρ. This
parameter does not depend on the effect-background-ratio that much. It is abstracted from the coef-
ficient of correlation between the diagrams measured and fitted. To exclude background influences,
a polynomial of the same order is put through both diagrams. This is the order of the background
polynomial in the Rietveld fitting lying above the background polynomial itself. This polynomial
is crossing the diagram in a way enabling that the average of all intensity values adapted by this
polynomial is around zero. Subsequently the coefficient of correlation ρ between both diagrams is
calculated. If both curves coincide, this value is 1. In reality, it is less than 1. We get the difference
1− ρ as output. For sufficient fitting, this value should be around 1%. In contrast to the R values, this
new quality parameter also allows a comparison of the fitting results of different diffraction patterns.

Last not least, we recommend not to evaluate the results by means of the R values, only. As a rule,
check the plausibility of parameters by investigating the individual parameter errors. For example this
plausibility check can be advantageous to localise phase-depending errors easily.



Chapter 6

Sample preparation

Sample preparation causes the highest systematic error in X-ray powder diffractometry (see [17]).
These errors result from influences such as insufficient sample statistics, preferred orientation, mi-
croabsorption and sample roughness. The Rietveld method is only partly suitable to correct their
impact on the diffraction diagram.

For that reason, it is very important to minimize the mentioned error influences by careful sample
preparation.

6.1 Sample statistics

X-ray powder diffractometry is based on the assumption that the X-rays are diffracted on a sufficiently
great quantity (> 104) of crystallites. Note that the assumptions concerning the profile shape and
the intensity of the diffraction reflections are valid under these circumstances only. To increase the
number crystallites involved in the diffraction process, use the following possibilities:

Reduce grain size by grinding

If the sample material has a coarse graininess, grain sizes of 2 to 10 μm should be achieved at all by
milling. Alterations inside the real structure of the crystallites or phase changes must be avoided, as
far as possible.

It is not recommended to mill grain sizes until values below 1 μm, because peaks will be widened due
to crystallite size and maybe even due to real structure. Low energy mills with a high acitve milling
surface like the McCrone micronising mill are favourable, as well as wet milling.

Enhance divergence of the primary beam

Rietveld analysis with BGMN does not demand for any extremely high resolution of the diffractome-
ter. Use primary beam divergence values as high as possible depending on the sample dimensions. For
multi-phase samples we must find a compromise between peak overlapping and best grain statistics.

We recommend not to use narrow axial divergence collimators. When removing the second collima-
tor, which is often in use forstandard device settings, the measured intensity will be increased around
200%. Grain statistics can also be improved by an enlarged axial angular divergence of the diffracted
beam. As a result, we get a strongly asymmetric profile shape which can be modelled excellently in
the program causing no further errors. This behaviour is illustrated in the following figures. For mea-
surement of the SRM660 (LaB6) sample, an URD6 diffractometer with/without secondary collimator
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Figure 6.1: 100 reflection of a LaB6 sample (SRM660), measured with secondary collimator; Rwp =
13.81%

Figure 6.2: 100 reflection of a LaB6 sample (SRM660), measured without secondary collimator;
Rwp = 10.43%
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was used.

As to be learnt from the figures, the measured intensity is almost twice when removing the secondary
collimator. Even the Rwp value is a little bit better. Thus it is proven that we do not lose any accuracy
for the computed peak model.

Sample spinning

Grain statistics can also be improved by spinning the sample during measurement. In addition the
problem of preferred orientation can be reduced to certain degree, depending on the axial divergence.

Automatic divergence slit

Grain statistics at high angles can be improved using an automatic (variable) divergence slit. See
section 7.1.

6.2 Preferred orientation

As a basic supposition for Rietveld analysis and many other procedures of X-ray diffractometry,
the crystallites should be situated in the sample in random orientation. But the crystallites often
tend to get their orientation along specific crystallographic directions, for example during filling the
sample holder. In that case, one direction can be favoured, e.g. by a preferred cleavage face or
growth directions of small crystallites. Commonly we even have to cope with a number of preferred
directions.

To tackle this problem, sample preparation must first of all try to avoid preferred orientations. It is true
that the described program can correct a certain level of preferred orientation. Unfortunately, these
corrections may result in correlation with parameters being significant for crystallography parame-
ters however. For that reason the correction of preferred orientations within the program is the last
thing you should do. The parameters used to correct preferred orientations are described in chapter
“Theory”, section “Scale and preferred orientation”.

Sample spinning and transmission geometry

As already mentioned, preferred orientations can be compensated to a certain degree by spinning the
sample.

Let the crystallites be preferentially 001-oriented in direction of the sample normal. In reflection
geometry, only crystallites with small tilts against the sample normal get into the reflection position.
This behaviour is caused by the beam divergence due to rotation. In transmission geometry, the
spinning axis of the sample is oriented orthogonal to the diffraction vector. For that reason, the
number of the scattering crystallites is essentially higher than in reflection geometry.

Provided that it is possible under the aspects of instrument sample transparency and preparation, it
is recommended to measure with spinning sample and in transmission geometry. Grain statistics
are improved in comparison to reflection geometry. Simultaneously, the problems resulting from
preferred orientation are reduced.
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6.3 Microabsorption

As we demonstrated in section 5.7, the influence of microabsorption may be corrected in principle.
But an exact correction demands for the knowledge of the values of all grain-size distributions of all
phases. The correction introduced in section 5.7 is a kind of approximation, but still needs the knowl-
edge of the exact mean grain size of all phases. For ideal attenuation behaviour of the sample, the
grains should be so small that each grain absorbs no more than one per cent of X-radiation immission.

The best way to tackle with the problems mentioned above is to make samples as homogeneous as
possible, with fine grains for all phases.

In some cases it could also be useful to use a different anode material to avoid any problems resulting
from microabsorption. This recommendation is especially valid for minerals containing large amounts
of iron. Use Co-Kα radiation instead of Cu-Kα radiation. For Cu-Kα radiation, the mass attenuation
coefficients of Al2O3 and Fe2O3 differ by around 700%. In the case of Co-Kα radiation there will be
no practical difference anymore.

6.4 Sample roughness

Surface roughness of powder samples ranges from several micrometers to tens of micrometers due
to their physical state. In the case of low incidence angles X-radiation is completely absorbed by
protruding grains. As a result a reduced number of crystallites is involved in diffraction. This can
be learnt from a background decrease for small diffraction angles. The error acts in the same way
even on the background and the diffraction intensity. Consequently, reflections acting under small
angles have insufficient intensity. Because there is no effective way to correct for these effects, it is
recommended to prepare a sample with minimum sample roughness and to exclude very low angles
from the Rietveld refinement.

6.5 Sample holder (measurement in reflection)

If it is possible to prepare sufficiently large samples, there are almost no constraints for the material
of the sample holder. In this case we can collimate the primary X-ray in such a way that the radiation
arrives on the area of the sample holder. In the case of sufficient sample thickness the sample holder
cannot produce any diffraction background or even any reflections at all.

However, if we have only few sample material, it could be useful to apply a sample holder with a Si-
or quartz- monocrystal bottom.

Be especially careful when mounting the sample onto the sample holder/diffractometer. Place the
sample surface exactly at the rotation axis of the goniometer. A value of Δd for the deviation of the
sample surface from the rotation axis results in a deviation in 2Θ following the relationship mentioned
below:

Δ2Θ = −2Δd
cos Θ

R
(6.1)

with

R Radius of the goniometer circle

The following estimation demonstrates how important it is to place the sample exactly. The cosine is
around 1 for small angles. Let the radius of the goniometer circle be 175mm. In this case an error of
100μm during positioning of the sample would result in an angular deviation of around 0.065o.



Rietveld Analysis Program BGMN 45

To place the sample with an accuracy of less than ±50μm in the axis of rotation we need special
arrangements. As a rule the EPS2 parameter should always be released during Rietveld analysis.
This parameter describes the angular deviation due to the sample eccentricity. EPS2 is recommended
for general use unless the angular range to be evaluated is < 40o. In this case EPS1 and EPS2 would
correlate strongly.

A reliable compromise between surface roughness and preferred orinetation of the sample could be
the application of the “side filling” technique, buth other methods can also be appropriate, depending
on the sample material.

For comprehensive description of sample preparation techniques see chapter 4, in [6].
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Chapter 7

Measuring strategy

To achieve precise results in Rietveld analysis, careful measurement on a well-adjusted device is
absolutely necessary. The quality of measuring data can be enhanced by destined choice of measuring
parameters. Selection of measuring parameters is explained in the chapter below.

7.1 Diffractometer control

The program expects counts which have been obtained by stepwise scanning. The user is recom-
mended not to use a continuous scan: In these cases the deviations between the real angle and the
stored one are increasing as a function of rising angle. For default you would set equidistant angular
steps at constant measuring time for each step. But this measuring strategy is not necessary, because
the program is able to cope with both non-equidistant angular steps and arbitrary measuring times for
each step.

As a rule of thumb let the angle step size be around a fifth of the half width of the narrowest peak,
that are normally 0.02 to 0.05o. Keep the angular range in a way, that the peaks of low-indicated
lattice planes are always contained. For improved fitting of the background, a background range of
some degrees should lie in front of the first peak. For analysis of phases and real structures without
refinement of atomic positions and anisotropic temperature factors, an upper boundary of about 90o is
commonly sufficient. This boundary means that there are no intensive peaks above this angular value.
For structure refinement, tr to cover the entire angular range, which is in most cases up to 160o. To get
a precise analysis, chose a measuring time value that enables a minimum of 2500 counts for a greater
number of peaks.

Variable counting time

There are a lot of factors reducing the measured intensity towards higher diffraction angles. The
Lorentzian polarisation factor, the Debye-Waller-factor and the atomic scattering factors are the most
important ones. Partly, their influence is compensated by the multiplicity of peaks, which is increasing
in with the angle 2Θ. In cases of cylindrical sample geometry the absorption of the sample also acts
for balancing.

Despite of this intensity slope, Rietveld measurements are commonly carried out with constant count-
ing time per step. As a result, the accuracy of the measuring values is higher for low angles than for
higher angles. This effect is mostly unfavourable since the peak density is essentially higher in the
case of greater diffraction angles.

Unfortunately it is not possible to establish a universal simple rule to modify the measuring time as a
function of the angle. The atomic scattering factors, the Debye-Waller-factor and multiplicity depend
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on sample material. Therefore, it is recommended to determine the expected intensities in a short
preliminary measurement. Based on this pattern, a new measuring instruction with several intervals
can be elaborated, whose measuring time increases with each interval.

To calculate variable measuring times, you may use a software of Madsen and Hill [19]. Necessary
entry parameters: The average value for thermal diffuse scattering, the mass attenuation coefficient,
the predominant crystal system and the average chemical formula of the sample.

Variable (automatic) divergence slits

Variable divergence slits are used to expose a constant sample length independent of the angle. Con-
sequently, a formulation of the 2Θ-dependency of the divergence angle (or equatorial slit dimension)
has to be used. This is easy to do by the program GEOMET when calculating the geometry function.

Figure 7.1: Exemplary diagram measured by means of a variable divergence slit and evaluated by
BGMN. Illuminated specimen length 10mm, Rwp=6.48%

Therefore the slit aperture must be represented as a function of the angle, and GSUM has to be used.
We give an example for 10mm exposed sample length:

HSlitR=250-152
HSlitW=(2*152*10*sin(pi*zweiTheta/360))/(2*250+10*cos(pi*zweiTheta/360))
GSUM=Y

In contrast to other Rietveld programs, the data do not have to be subjected to any further correction.
The calculated geometry function includes the profile changes and the intensity corrections. As for
fixed slits the error data are computed correctly.

An example is the refinement of the structure of anglesite (see Chapter 4) using automatic divergence
slit measurements. The refinement results of two ADS measurements and one fixed slit measurement
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(same sample, all 15–140o2Θ, step 0.03o, 10 sec/step on an XRD 3000TT instrument without sec-
ondary Soller slits) are compared to the data cited from [13], and computed from the original data
set using BGMN, resp. The own fixed slit measurement has an irradiated sample length of 10 mm at
about 30o2Θ, the region of the most intense lines. The results in tab. 7.1 are comparable, although the
number of the aquired measuring points and the measuring time are reduced compared to [13].

The advantages of the variable divergence slits are:

• Correct intensity values in the entire angular range because of the sample holder is not irradiated

• Higher intensity in the case of high angles in comparison to the fixed slit

• Better grain statistics especially for higher angles

• Lower angular limit due to prevention of irradiation of sample boundaries

• Low intensity of the background at low angles

Therefore, it is explicitely recommended to use automatic divergence slits in structure refinement and
phase analysis.

Note:

If you are working with a fixed anti-scatter slit, you should select a sufficient slit width that does
not limit the beam path even for large angles! Additionally, if you are working with a variable anti-
scattering slit plus TubeTails-Correction, you must use the SSlitW plus SSlitR entries in the profile
describing ∗.str-file for the GEOMET run.
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Table 7.1: Comparison of fixed and automatic divergence slit measurements, resp.

Value RR RR-BGMN F1 V5 V10 X

Rexp 1.5%–7.0% 5.36% 6.16% 4.96% 3.70% —
Rwp 8.2%–20% 7.84% 8.36% 7.91% 6.48% —
a/Å 8.4764–8.4859 8.4760(2) 8.4789(6) 8.4786(5) 8.4786(4) 8.482(2)
b/Å 5.3962–5.4024 5.3958(2) 5.3991(4) 5.3989(3) 5.3986(3) 5.398(2)
c/Å 6.9568–6.9650 6.9564(2) 6.9589(5) 6.9588(4) 6.9588(4) 6.959(2)
Pb: x 0.1875–0.1883 0.18790(7) 0.1880(1) 0.1881(1) 0.18790(7) 0.1879(1)
Pb: z 0.1669–0.1683 0.1672(1) 0.1672(2) 0.1674(2) 0.1671(2) 0.1667(1)
Pb: B/Å2 0.9–2.39 1.55(2) 1.44(2) 1.30(2) 1.63(2) 1.48
S: x 0.0621–0.0673 0.0631(4) 0.0636(6) 0.0632(5) 0.0636(4) 0.0633(6)
S: z 0.6799–0.6860 0.6849(5) 0.6878(7) 0.6852(7) 0.6851(5) 0.6842(7)
S: B/Å2 0.29–1.37 0.83(7) 1.0(1) 0.7(1) 1.04(7) 0.74
O1: x 0.902–0.924 0.906(1) 0.907(2) 0.909(1) 0.907(1) 0.908(2)
O1: z 0.585–0.601 0.597(1) 0.598(2) 0.599(2) 0.598(2) 0.596(3)
O1: B/Å2 0.50–4.2 1.2(2) 0.8(2) 0.8(2) 1.0(2) 1.87
O2: x 0.177–0.200 0.191(2) 0.192(2) 0.191(2) 0.191(2) 0.194(2)
O2: z 0.523–0.548 0.547(2) 0.546(2) 0.543(2) 0.545(2) 0.543(2)
O2: B/Å2 0.1–5.8 1.4(2) 1.6(3) 0.6(2) 1.4(2) 1.76
O3: x 0.071–0.080 0.0786(6) 0.0808(8) 0.0810(8) 0.0790(6) 0.082(1)
O3: y 0.018–0.041 0.026(1) 0.024(2) 0.026(2) 0.026(1) 0.026(2)
O3: z 0.806–0.819 0.811(1) 0.807(2) 0.805(2) 0.807(1) 0.809(2)
O3: B/Å2 0.8–4.6 0.9(2) 0.7(2) 0.7(2) 0.8(2) 1.34

Table colums are marked as follows:

1. column RR: Range of results given by HILL (1992).

2. column RR-BGMN: Data as distributed, re-evaluated using BGMN.

3. column F1: Own measurement of RR sample PbSO4 using fixed divergence slit 1 mm.

4. column V5: Own measurement of RR sample PbSO4 using variable divergence slit, 5 mm
irradiated sample length.

5. column V10: Own measurement of RR sample PbSO4 using variable divergence slit, 10mm
irradiated sample length.

6. column X: Single crystal data as described ibid.
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7.2 Sample illumination

If possible, let the sample be greater than the area illuminated by the primary beam (the “infinite
large” sample). Select the divergence slit width correspondingly narrow.

However, the sample may be too small. Under these circumstances, it may be necessary that the
sample surface is illuminated as far as possible, that the beam really overflows the sample.

In that case the sample size and shape must be considered during calculation of the device function.
Use GEOMET (parameters SampleW and SampleH for width and height, SampleD for sample
diameter, resp.) for consideration. For samples of irregular shape, take average values. Note that
GSUM must be set “Y” in the case of small samples. You should also reduce angle step sizes for
running GEOMET in order to get a more precise interpolation of the profile parameters.

7.3 Measurement geometry

There are three sample geometries to be selected. Each of them has its particular advantages and
disadvantages.

Reflection

Reflection (Bragg-Brentano), which is often predefined by sample consistency, is regarded as standard
geometry. Problems resulting from the profile shape mostly occur in the case of low angles. This
problem results from the sample roughness, which can only nearly be modelled. Weighted least
squares sums Rwp of 5% are attainable in reflection mode.

You should take into consideration transmission geometry, if this is possible for the reasons of applied
device and sample material.

Transmission

Although used more seldom, transmission is clearly more advantageous than reflection. Transmission
can be modelled much more exactly and also particle statistics can be controlled much better. Sample
roughness is irrelevant for small angles. Another advantage, that is essential for practice, is the weaker
preferred orientation in comparison to reflection mode.

The specific profile shape for transmission geometry (smeared box profile with asymmetric tails dis-
placed in 2Θ) is modelled very exactly. Weighted least-squares sums Rwp of 2% have already been
achieved.

Figure 7.2 illustrates a profile calculated to evaluate the sample metashale Böhlscheiben.

Capillary

Capillary stands for the third introduced geometry. In some cases, e.g. for high temperature investi-
gations, it can be the only possible geometry.

Until now experiences on accuracy have not been made available yet. Mistakes may result from a lot
of causes such as:

• non-axial and/or tumbling sample in the range of 10 μm.

• non-homogeneous sample due to particle statistics. The errors observed in reflection may mul-
tiply themselves.
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• Density fluctuations in longitudinal capillary direction (by uneven filling of the capillary) result
in profile errors.

Consequently capillary geometry should be used in cases where the sample is available as homoge-
neous stick, e.g. as thin wire or fibre. Provided that another geometry can be realised, do not use a
real capillary with powder filling. This recommendation is based on the above mentioned causes.



Rietveld Analysis Program BGMN 53

Figure 7.2: Exemplary device function in transmission (2Θ = 30o)

Figure 7.3: Example device function as calculated for a gypsum filled capillary at 2Θ = 12o
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Chapter 8

General restrictions

8.1 Physical and mathematical restrictions

How powerful a software may be, it is not able to model all physical effects which can occur. We
need assumptions for approximations, which limit either the accuracy to be achieved or the range
of application. The following chapter includes the essential restrictions resulting from the applied
models.

Obtainable precision of intensities and phase contents

Deviations of the electron density from the spherical shape result from influencing bonding electrons.
Consequently the deviation of real intensity from theoretical intensity ranges from 2 to 5%. Due to
averaging over all reflections we can achieve a relative accuracy of maximally 1 to 2% for the phase
contents.

Preferred orientation at grazing incidence

All implemented models of preferred orientation describe an inverse two-dimensional pole figure.
The diffraction vector (medians between primary and secondary beam) is assumed either in fixed
orientation related to the sample or subjected to constant averaging. For example, constant averag-
ing is performed for a rotating transmission sample. In the special case of grazing incidence both
suppositions are not guaranteed. The deviation of the diffraction vector from the sample’s normal
is proportional to the increase of the angle 2Θ. For this case a texture correction must describe the
entire three-dimensional texture. Such texture corrections are much more complicated and also react
much more sensitively upon parameter correlation. There is no adequate model implemented for the
description of PO in grazing incidence geometry, until now.

Primary monochromator

The BGMN program is based on a folding of wavelength distribution with the device function for
an ideal profile. This assumption is based on the condition that the different beam paths (shaping
the device function) are the same for all wavelengths. This is not the case for beams diffracted by a
single-crystal primary beam monochromator. For that reason the profile model of BGMN cannot be
applied for primary monochromators. Some other reasons are:

• In cases of readjustment of the monochromator crystal the wavelength distribution can be mod-
ified in a not reproducible manner
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• Even if one would refuse the separation in wavelength distribution and geometry function
within the profile model, the profile shape to be computed would not remain reproducible

Provided that one is trying to do the structure analysis without the full BGMN profile model, one
can analyze data obtained by a primary monochromator. In this case, the profile is based on a special
wavelength distribution (Delta function) and a simple goniometer function formula. The numerical
advantages of the program are still alive. For example, such an approach can be applied for the
analysis of synchrotron data.

Neutrons (constant wavelength and time of flight)

The BGMN program system was tailored for use in the X-ray lab, because most of the Rietveld
analyses are performed in such laboratories.

With respect to the profile shape to be modelled, neutron diffraction patterns are easier to treat than
X-ray diagrams. For that reason, neutron diffraction patterns can be analyzed quite well by means of
the simple analytical profile functions as used in traditional Rietveld programs. The new optimization
algorithm as well as the sample model would be the only advantages resuling directly from BGMN.
Therefore, the option of refinement of neutron data is not implemented in BGMN

8.2 Restrictions due to software

The program was newly developed from the roots. It does not take reference to any published Rietveld
code. Basing on an entirely new way of programming, the program does not cause any restrictions
for the user concerning the volume of the analysis subject. Number of free parameters, of measuring
points, of diffraction reflections and phases are the most essential parameters that will not be restricted
any more.

The only existing limitation of the software is the number of the characters per item in the ∗.sav and
∗.str files. An item is the least unit that is limited by delimiters (space, new line). But, an item can
also be written over a lot of lines, without any blanks, and if there remains at least one open bracket
at the end of line, which has not yet been closed. Maximally 8000 characters per item are permitted.

The only practical restriction arises from the CPU time, which naturally increases with the number
of the parameters/peaks/measuring points. In case of bad (low statistic) measurement or strongly
correlating parameters in the starting model the necessary CPU time increases also.

Example:

About 1min 30s min CPU time, when using a Pentium 4 2.4 GHz for a phase analysis with 2101
pattern data length; phases: 2 triclinic, 2 monoclinic, 1 hexagonal and 1 tetragonal phase with 997
reflections and 84 parameters in total (see figure 9.11).
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Phase analysis

Some examples are introduced to clarify practical problems of quantitative phase analysis. The prin-
ciple is described for a mixture of two phases. The second example deals with the determination of
the amorphous part in a sample making use of an internal standard. The analysis of metashale being
a very sophisticated application is taken for example. At the end of this chapter you will read about
the experience gained by using BGMN.

9.1 Mixture of goethite and quartz

Take a 50/50 mixture of goethite and quartz as a simple example of phase analysis. The sample was
prepared in an aluminium cuvette to be filled from the front. The sample holder was filled with low
pressure only. The remaining material was drawn off laterally.

Measurement was carried out on an URD 6 diffractometer (reflection geometry) with sample rotating
unit. A Co fine focus X-ray tube, automatic divergency with irradiated sample length of 15mm (see
subsection 7.1), a primary soller collimator with 15mm axial width and a 0.25mm receiving slit were
used. The diffracted radiation was analyzed by a graphite secondary monochromator.

Measurement was performed in a range of 5 to 80o (step size 0.03o, time preselection 5 sec, that is
2501 data points). Such values are common for standard phase analysis.

By Geomet and MakeGEQ, the device function was calculated using the URDco15ph.SAV control
file. This file will be visible by opening BGMNwin, selecting

File→Open Control File

browsing to the URDco15ph.SAV file and opening it. See figure 9.1. Note that the calculation with
Geomet/MakeGEQ is only necessary, if the required device function has not yet been computed.
When using MakeGEQ for computation, consider, that you have to enter explicitly the average pen-
etration depth of the X-rays. Average penetration depth is a correction, which represents the profile
deformation better than parameter EPS3 for angle correction. An average value of the two phases,
the sample consists of, was introduced for D. For the calculation, use again BGMNwin and enter

Run→Geomet

browse to the URDco15ph.SAV file and open it. When Geomet has finished, start MakeGEQ in the
same way:

Run→MakeGEQ
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Figure 9.1: Control file URDco15ph.SAV as used for the Geomet and MakeGEQ run
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browse again to the URDco15ph.SAV file and open it.

In the following step the structure files of the present phases were provided. Since there was no
information available on the real structure, the width parameters B1, k1 and k2 were released during
both the fitting phases. Literature values were taken as values for the Debye-Waller-factors (TDS).
As a rule in phase analysis the temperature factors are maintained as preset instead of released. Pay
attention to entries such as GOAL:...=GEWICHT. In this term the identifiers between GOAL and the
equal mark are required for output of the phase parts into the result file. For output, the corresponding
formulae are entered into the control file for Rietveld analysis. Figure 9.3 shows both the structure
files Goethite.str and Quartz.sav as visible in BGMNwin using the Command

File→Open Structure File

Due to preferred orientation, for both the structure descriptions

GEWICHT=SPHAR4

was selected. The control file GoethtieQuartz.sav was generated for Rietveld analysis. Figure 9.2
shows it as visible within BGMNwin by selecting

File→Open Control File

To obtain just the weight contents of the phases in the output file, the lines of the type GOAL[x]=...
were inserted. Note, that you have to use even the same identifier, that has been entered to the structure
files by the terms GOAL:...=GEWICHT.

BGMN requires 14 seconds for the calculation with 53 parameters.

Figure 9.4 shows the first lines of the GoethiteQuartz.lst result file from which all the phase contents
as well as the associated random errors may be obtained, it will be shown by selecting

Tools→Show Results

and opening the GoethiteQuartz.lst file. The errors represent a lower boundary of the esd (estimated
standard deviation) as defined by the error propagation rules from only counting statistics of the
pattern data. In reality the total error of analysis is greater than the computed one. This difference is
caused by systematic deviations that e.g. may occur during sample preparation.

Figure 9.5 shows good coincidence of measured and computed diagrams. Presumably the observed
intensity deviations are caused by inaccuracies of the used Debye-Waller-factors. The user is recom-
mended not to refine the TDS parameters, because of possibly strong correlation of the parameter of
the temperature factors and possible preferred orientations.

Goethtite Quartz Parameter count 1 − ρ Rwp

quant. phase
analysis

49.30(18)% 50.70(18)% 53 0.524% 5.20%

prepared
quantity

50% 50% — — —

Table 9.1: Estimated and prepared phase contents in comparison
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Figure 9.2: Control file GoethtieQuartz.sav as used in the example

Figure 9.3: Both the structure files Goethite.str and Quartz.sav as used in the example
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Figure 9.4: First lines of the result file GoethiteQuartz.lst giving the estimated phase contents of both
the phases including their random errors

Figure 9.5: Measurement (in reflection on URD 6) and difference curve of a mixture of goethite and
quartz (Rwp 5.20%)
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9.2 Determination of amorphous content by using an internal
standard

A mixture of 40% glass, 30% quartz, 10% adularia, 10% Albite and 10% calcite was used for trying
to estimate the amorphous content (glass) by an internal standard. Therefore, 10% zincite powder
were added to 90% of the sample material. The same device as in the example above was used.
The structure files as used are shown in figure 9.9. They may be inspected by opening BGMNwin,
selecting

File→Open Structure File

browsing to the structure files and opening them.

Figure 9.6 control glass40ground12min.sav file was created for Rietveld analysis. It may be inspected
by opening BGMNwin, selecting

File→Open Control File

browsing to the glass40ground12min.sav file and open it.

Figure 9.6: Control file for the estimation of the amorphous content

The amorphous part is determined in the lines below:
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...
gAdularia=Adularia*0.1/(Zincite*0.9)
gCalcite=Calcite*0.1/(Zincite*0.9)
gPlagioclaseAlbite=PlagioclaseAlbite*0.1/(Zincite*0.9)
gQuartz=Quartz*0.1/(Zincite*0.9)
% calculation of the amorphous content
gAmorph=1-gAdularia-gCalcite-gPlagioclaseAlbite-gQuartz
GOAL[1]=gAdularia
GOAL[2]=gCalcite
GOAL[3]=gPlagioclaseAlbite
GOAL[4]=gQuartz
GOAL[5]=gAmorph
...

First the contents of all the well crystallined phases, related to the known part of the internal standard,
are calculated. To make these contents values also available in the output file (result file), they are
assigned to the corresponding GOALs. This division into auxiliary variables and GOAL assignment
makes the contents values also available to just another GOAL statement for the amorphous part.

Last but not least, the amorphous part gAMORPH is computed by simple subtraction: Hereby 1 (cor-
responding to 100%) is diminished by the determined phase contents and the content of the internal
standard.

The calculation takes about 2 min CPU time. Then we obtain the following result:

Figure 9.7: Result file of the amorphous content estimation

Consequently the amorphous content is about 39.4(3)%. Note that the errors caused by all the other
phase contents do also impact due to error propagation.

As already mentioned, the specified failures are only random errors. Systematic errors cannot be
computed by the program. The denominated errors are to be understood as a minimum value, which
often may be much higher due to the systematic errors occurring in each case.

Figure 9.8 shows the internal fitting of the background caused by the amorphous content. Fitting can
be abstracted from the background curve, which is bulged upwards amongst 20 and 40o.
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Figure 9.8: Measurement, difference and background curve of the amorphous content example with
internal standard zincite (section); CPU time approx. 2 min.
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Figure 9.9: Structure files as used in the amorpous content example
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9.3 Metashale Böhlscheiben

This standard rock sample examined well was selected in order to test the convergence behavior of
the BGMN program on a real sample with several low symmetrical phases and to compare different
measuring geometry.

The measurements were carried out at a sample of particle fraction < 30μm (step by step ground
and sieved) both in Bragg-Brentano geometry (reflection, URD 6) and in Debye-Scherrer geometry
(transmission through flat sample, XRD 3000 TT). For the case of transmission measurement, the
measurement parameters (goniometer radius, slits, sample thickness, step width, counting time) were
chosen so that a resolution sufficient for qualitative phase analysis was reached. Pulse statistics and
peak profiles useful for normal peak search programs were still achieved in spite of smaller intensities
compared to reflection geometry (see fig. methashale2). Consequently, the measuring time was in
contrast to HILL et al. (1993) in the order of magnitude of the “normal” measurements in reflection
geometry.

Refinement was carried out with muscovite as a 2M1-polytype as above, chlorite (ripidolite) 1MIIb
and albite with isotropic width model and complex texture correction as well as with quartz. The
difference curve of first refinement showed weak remaining peaks at 0.324 nm. That corresponds to
a small potassium feldspar content presumed already in former times already. Therefore, microcline
(without texture modeling and with limited peak broadening) was included in the model during the
second refinement.

Figure 9.10: XRD 3000 TT measurement in reflection and difference curve (metashale Böhlscheiben
— section); Muscovite, chlorite, albite and quartz (Rwp=9.87%, CPU time approx. 5 min)

The difference plot shows some weak residual peaks, especially at 0.325 and 0.169 nm (fig. 9.10).
This can be interpreted by the presence of rutile and/or potassium feldspar (microcline). These struc-
tures were inserted in a second calculation, including upper limits for peak broadening and a PO
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correction model. For these minor phases the PO correction model was reduced automatically to
isotropy during refinement. The second calculation diminished Rwp by 0.4%. Considering the low
microcline content of about 1.1% and the rutile content of 0.9%, this could be taken as a quite certain
indication for the presence of these phases in the sample.

Figure 9.11: XRD 3000 TT measurement in reflection and difference curve (metashale Böhlscheiben
— section); Muscovite, chlorite, albite, quartz, microcline, rutile (Rwp=9.46%, CPU time approx. 3
min)

The probability of the potassium occupation in muscovite is fitted to 0.84(1), which is a very plausible
value. This is another indicator for the correctness of the used model. The PO correction factor (see
table 9.2) for the 002 reflections of muscovite and chlorite being especially sensitive to preferred
orientation are 2.5 resp. 2.0. This means, that the refined counting rate of the associated reflection is
about 2.5/2.0 times higher than the ideal one without preferred orientation.

To decrease preferred orientations and to check the correction model, the sample was additionally
measured and analyzed in transmission geometry (see before). The results (table 9.2) correspond to
the expectations. The direction of preferred orientation is reversed. Because of the low intensity, the
calculated errors are higher than in reflection mode and the detection of microcline became nearly
impossible.
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Figure 9.12: XRD 3000 TT measurement in transmission and difference curve (metashale
Böhlscheiben — section); Muscovite, chlorite, albite, quartz, microcline, rutile (Rwp=15.38%, CPU
time approx. 5 min)

Table 9.2: Analysis results of metashale Böhlscheiben

Phase STARKE [28] BGMN reflection BGMN transmission
wt-% wt-% texture/hkl wt-% texture/hkl

Quartz 30 31.4(3) 32.6(4)
Muscovite 39 41.2(4) 2.10/002 40.1(6) 0.38/002
Chlorite 19 18.5(3) 2.42/002 17.2(6) 0.44/002
Albite 10 6.95(23) 0.88/020 7.8(3) 1.08/020
Microcline — 1.1(2) 1.4(3)
Rutile — 0.86(7) 0.88(14)
Accesories 2
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9.4 Rules for phase analysis

When using BGMN for phase analysis, the following rules proved to be very useful (see [3]):

The program is extremely robust, even to achieve convergence. For that reason all parameters can be
determined in only one calculating step.

The cell parameters demand for initial values as precise as possible. Lower and upper boundaries
should be defined especially for those phases with small contents.

Atomic positions are defined as constants and should not be refined at all.

There are no defaults necessary for weights, peak widths and the background parameters. These
parameters start at zero.

Probabilities of occupation and temperature factors should only be refined for the main phases and
heavy elements. Upper boundaries are often useful. Be especially careful when refinement of temper-
ature factors and fitting of preferred orientation are carried out simultaneously. In this case the TDS
parameters correlate strongly with the parameters of preferred orientation.

As a rule, peak broadening resulting from crystallite size and micro strain (B1, k1 and k2) should
always be refined. Upper boundaries should be defined for low phase contents and complex diagrams.
In the case of high phase contents, anisotropic B1 parameters should be applied. In special cases, you
can also try to use anisotropic k2.

Complex models for preferred orientation (SPHARx with x ≥ 4) are useful for minerals with multi-
ple cleavage. The single models ANISO or SPHAR2 are to be preferred for phases that are strongly
oriented but of low content. Obviously it is better to avoid preferred orientation by a suitable experi-
mental procedure (preparation, transmission geometry).

In general the angle correction parameters EPS1 for zero offset and EPS2 for sample eccentricity
should be released. If the real structure of the phases is hardly disturbed and thus causes problems
when fitting large angles, only EPS1 should be refined.

If using the internal standard, its lattice constants may be kept constant. However you should release
EPS1 and EPS2, in some cases also EPS3, for correction of the sample transparency.
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Chapter 10

Size/strain analysis

10.1 Analysis of a virgilite sample

For a round robin test concerning different size/strain analysis methods, measurements of a glass
ceramics sample were made. The glass ceramics material consisted of virgilite. We had to determine
crystallite size and micro strain.

Measurement of the compact sample was made on an XRD 7 diffractometer (BRAGG-BRENTANO
geometry) in an angular range of 15 to 140o, step width 0.02o, measuring time of 10 sec. We used a
Cu − Kα normal focus tube, a primary and a secondary collimator as well as a graphite secondary
monochromator. The device function was computed by means of GEOMET and MAKEGEQ using
the following control file:

Rd7nf31.sav

% theor. Verzerrungsfkt. f. Messung am RD7 Dr. Kleeberg
VERZERR=rd7stdkl.ger
GEQ=rd7stdkl.geq
R=175
D=0.12
HSlitR=175-113
HSlitW=0.92
VSlitR=175-72
VSlitH=10
FocusH=10
FocusW=0.1
DetH=15
MonR=175+50
DetW=0.31
SamplD=25
PColl=0.5/29
SColl=0.5/20
zweiTheta[1]=10
zweiTheta[2]=16
zweiTheta[3]=24
zweiTheta[4]=34
zweiTheta[5]=48
zweiTheta[6]=60
zweiTheta[7]=90
zweiTheta[8]=120
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zweiTheta[9]=150
WMIN=10
WMAX=150
pi=2*acos(0)
WSTEP=3*sin(pi*zweiTheta/180)

In size/strain analysis the profile shape has to be modelled as precisely as possible. For that reason an
average penetration depth of 0.12 mm was considered for the calculation with MAKEGEQ.

The structure of virgilite is described in the following file:

Virgilit.str

PHASE=virgilite SpacegroupNo=180 //
PARAM=A=0.5156_0.51ˆ0.52 PARAM=C=0.54134_0.536ˆ0.546 //
GAMMA=120 PARAM=GEWICHT=0_0 PARAM=X=1.5_0ˆ3 //
RP=4 B1=ANISO PARAM=k1=0_0ˆ1 PARAM=k2=0_0 //
GOAL=GrainSize(1,0,0) GOAL=GrainSize(0,0,1)
E=LI+1(X/3) Wyckoff=a PARAM=TDS=0_0
E=(AL+3(X/3),SI+4((3-X)/3)) Wyckoff=c TDS=ANISO
E=O-2 Wyckoff=j PARAM=x=0.2055_0.1ˆ0.3 TDS=ANISO

The chemical formula of virgilite is LixAlxSi3−xO6. Si is partially replaced by Al. Li is placed on
another lattice position in the same way as Al. According to recommendations by the manufacturer,
the mixing parameter x should be around 1.5. This value was set as the start value. The limits for
fitting the mixture parameters correspond to those values physically just possible.

An anisotropic crystallite size was expected due to the hexagonal lattice. For that reason anisotropic
crystallite size (B1=ANISO) and isotropic micro strain (PARAM=k2=0 0) were chosen as the peak
width model. We used the functions GOAL=GrainSize(h,k,l). Subsequently it was not nec-
essary to manually calculate the crystallite size from the individual peak widths. The mentioned
functions were applied to compute the crystallite size in the specified lattice direction. As another
advantage, this notation also allows to calculate error values.

Anisotropic temperature factors are introduced for the heavy ions O2−, Al3+ and Si4+. For the Li1+

ions of lower weight, isotropic temperature factors are implemented.

The measuring diagram shows a special feature: a wide peak to be assigned to the amorphous rate
in the sample lies between 29o and 34o. To fit the curve without any disturbance, this region was
excluded from fitting by the statement CUT[1]=29:34. Now, the rts.sav control file does not show
any further special effect:

rts.sav

VAL[1]=rts031
% Exclude the range between 29 and 34 deg
CUT[1]=29:34
VERZERR=rd7stdkl
STRUC[1]=virgilit
PARAM[1]=EPS1=0
PARAM[2]=EPS2=0
PROTOKOLL=Y
pi=2*acos(0)
POL=sqr(cos(26.6*pi/180))
LIST=rts.lst
OUTPUT=rts
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Passing calculation (it runs about 1 min), the following file rts.lst is provided:

rts.lst
Rietveld refinement to file(s) rts031.val
BGMN version 4.0.15, 6000 measured points, 67 peaks, 37 parameters
Start: Sun Sep 21 20:04:12 2008; End: Sun Sep 21 20:04:21 2008
24 iteration steps

Rp=6.15% Rpb=12.55% R=2.71% Rwp=8.78% Rexp=7.40%
Durbin-Watson d=1.43
1-rho=1.32%

Global parameters and GOALs

****************************
EPS1=-0.00030+-0.00093
EPS2=0.00029+-0.00089

Local parameters and GOALs for phase virgilite

******************************************************
SpacegroupNo=180
HermannMauguin=P6_222
XrayDensity=2.502
Rphase=6.40%
UNIT=NM
A=0.51568+-0.00014
C=0.54314+-0.00015
GEWICHT=0.02430+-0.00017
X=1.411+-0.043
k1=0.74+-0.16
k2=0.00000539+-0.00000029
GrainSize(1,0,0)=34.67+-0.44
GrainSize(0,0,1)=61.8+-4.1
B1=ANISOLIN, MeanValue(B1)=0.00836896, sqrt3(det(B1))=0.00793716
Atomic positions for phase virgilite
---------------------------------------------

3 a 0.0000 0.0000 0.0000 E=(LI+1(0.4703))
TDS=0.0587+-0.0068

3 c 0.5000 0.0000 0.0000 E=(AL+3(0.4703),SI+4(0.5297))
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.02613, 0.00974, 0.00000 U[i,j]=(0.0002640, 0.0000984, 0.0000000

0.00974, 0.01948, 0.00000 0.0000984, 0.0001968, 0.0000000
0.00000, 0.00000, 0.01171) 0.0000000, 0.0000000, 0.0001749)

6 j 0.2078 0.4157 0.5000 E=(O-2(1.0000))
x=0.20785+-0.00016
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.05015, 0.02168, 0.01413 U[i,j]=(0.0005067, 0.0002190, 0.0001737

0.02168, 0.04336, 0.00000 0.0002190, 0.0004381, 0.0000000
0.01413, 0.00000, 0.04671) 0.0001737, 0.0000000, 0.0006980)

This result is to be estimated as follows:

• Within the error limits the computed mixing parameter x = 1.56± 0.037 is equal to the default
of 1.5

• The crystallite size (||A: 35.5 ± 0.4 nm, ||C: 48 ± 1.9 nm) is anisotropic

• Obvious peak broadening as a result of micro strain (k2 = 4.6 ± 0.2 ∗ 10−6)

• In comparison with Rexp (7.5%), the Rwp value (9.2%) is satisfying.

Using the statement k2=ANISO4, you may also consider anisotropic micro strains. This test has
been evidenced. Furthermore the micro strain values in A and C lattice direction can be calculated
automatically by the following statement:

GOAL=sqrt(k2(1,0,0)) GOAL=sqrt(k2(0,0,1))
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Additionally one must add the items

ANISOLIMIT=0 ANISO4LIMIT=0

for preventing anisotropies from switching off.

The changes can be taken from the following section of the result file:

rts.lst

Fit to file(s) rts031
BGMN version 2.5.3, 6000 measured points, 66 peaks, 51 parameters
Start: Tue Apr 27 19:59:03 1999; End: Tue Apr 27 20:00:14 1999

Rp=6.15% Rpb=12.37% R=3.59% Rwp=9.00% Rexp=7.54%
Durbin-Watson d=1.45
1-rho=1.72%

Global parameters and GOALs

****************************
EPS1=-0.00075+-0.00090
EPS2=0.00068+-0.00086

Local parameters and GOALs for phase virgilite

******************************************************
XrayDensity=2.512
Rphase=6.88%
UNIT=NM
A=0.51576+-0.00014
C=0.54322+-0.00015
GEWICHT=0.02474+-0.00015
X=1.549+-0.036
k1=0.246+-0.066
GrainSize(1,0,0)=40.34+-0.87
GrainSize(0,0,1)=38.3+-1.4
sqrt(k2(1,0,0))=0.00324+-0.00010
sqrt(k2(0,0,1))=0.00084+-0.00030
k2=ANISO4, MeanValue(k2)=0.00000546550
B1=ANISOLIN, MeanValue(B1)=0.00953425, sqrt3(det(B1))=0.00952953
parameter and GOALs for atomic position 1
--------------------------------------------
E=(LI(0.5165))
TDS=0.0538+-0.0056
parameter and GOALs for atomic position 2
--------------------------------------------
E=(AL(0.5165),SI(0.4835))
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.02638, 0.00919, 0.00000 U[i,j]=(0.0002666, 0.0000929, 0.0000000

0.00919, 0.01838, 0.00000 0.0000929, 0.0001857, 0.0000000
0.00000, 0.00000, 0.01312) 0.0000000, 0.0000000, 0.0001961)

parameter and GOALs for atomic position 3
--------------------------------------------
E=(O(1.0000))
x=0.20715+-0.00017
TDS=ANISO, vibrational matrice for 1st atomic position:
(beta dimensionless, U in nm**2)
beta[i,j]=(0.03558, 0.01587, 0.01703 U[i,j]=(0.0003596, 0.0001603, 0.0002093

0.01587, 0.03173, 0.00000 0.0001603, 0.0003207, 0.0000000
0.01703, 0.00000, 0.04117) 0.0002093, 0.0000000, 0.0006154)

The result is amazing:

• The Rwp value is slightly diminished by 0.2%

• Within the error limits the crystallite size is almost isotropic (||A: 40.3±0.9 nm, ||C: 38.3±1.4
nm)

• The micro strain (
√

k2||A: 3.24 ± 0.10E-3,
√

k2||C: 0.84 ± 0.30E-3) is strongly anisotropic.
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From that we may conclude, that the anisotropy of the peak widths is mainly based on anisotropic
micro strain effects. To get the differences between anisotropic broadening caused by crystallite size
and micro strain much clearer, we should do more precise measurements.

Finally the fitting result is shown in a diagram:
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Figure 10.1: Measurement and difference curve of the virgilite sample (section)

Excluding the range between 29 to 34o, measurement and calculation coincide very well.
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10.2 Tube tails correction

Using the raytraced geometric profiles in accurate size/strain analysis demands for some further cor-
rection. Tube tails mean: A small part of the X-rays emitted by the tube originates not inside the
focus, but up to 1mm outside the focus. This means 1mm equatorial broadening towards both sides of
the optical focus. If not corrected, these tube tails may totally disturb the profile shapes calculated by
fundamental parameters, because the fundamental parameter model uses an ideal box shaped profile
for the focus contribution. See figure 10.2.
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Figure 10.2: Tube tails as measured for an AEG fine focus tube. A lead foil containing a 50 μm hole
placed on sample position was used for reproduction of the tube focus onto the receiving slit.

Different tube types show different tube tails:

• An AEG long fine focus Cu anode tube shows 15.8% of intensity emitted outside the focus. For
sharp lines, fundamental parameters profile shape models as used by BGMN fail strongly.

• A glass tube from Seifert (made by Rörenwerk Rudolstadt), also long fine focus, shows only
6.7 % tube tails. But this tube is an older one. Today the Röhrenwerk Rudolstadt produces only
Siemens ceramic tubes. These tubes are not checked. Hopefully they show low tube tails, too.

• A Philips long fine focus Co anode tube (produced in 1993) shows 5.7% tube tails.

BGMN is able to correct for tube tails. To do so, use the switch

TubeTails=...
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in the ∗.sav file for the GEOMET run. Give a tube tails pattern as shown above. Attention: You
must use a narrow grid (small stepwidth) of 0.005 deg or, if your diffractometer doesn’t support such
a small stepwidth, at least 0.01 deg. You may use the same file formats as for VAL[1]=... pattern
data input. The paths of the X-rays emitted by the tube tails often are restricted by a secondary
anti-scattering slit. Therefore use the entries

SSlitW=...
SSlitR=...

for description of equatorial dimension (width) and radius of a secondary anti-scattering slit. Equiv-
alent to HSlitW, the entry SSlitW may depend from zweiTheta (2Θ). Thus a variable anti-
scattering slit is supported.

For explanation we show the measurement of SRM 660 standard (LaB6) without (left) and with (right)
tube tails correction for the AEG tube mentioned above (figure 10.3)
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Figure 10.3: LaB6 (SRM660) as measured and refined without (left) and with (right) tube tails cor-
rection.

We measured the SRM 660 (LaB6) standard with three different tubes (Cu-Kα and Co-Kα radiation)
using three different slit set-ups on two different diffractometers. For demonstration of the remaining
errors we give results using two different Cu-Kα spectra as cited from [1] resp. [14]. Table 10.1 shows
the results.
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This table greatly illustrates the success of the tube tails correction. At our opinion, tube tails are
the strongest fault of classical fundamental parameter profile description. Obviously the inaccuracies
of different Cu-Kα spectra overdominate the standard uncertainties of the fundamental parameter ap-
proach. On the other hand our measurements clearly show the imperfectness of line profile standards.
The total error of our approach, including Kα inaccuracy, is much less compared to line standard
imperfectness.

Obviously the Λ data given in [1] are somewhat too broad compared to [14]. Data given in [14] give
comparable results for different anodes. Therefore we recommend using the data given in [14], which
are available for Cr-, Fe-, Co- and Cu-Anodes.

Using tube tails correction, one may think about using BGMN for line profile analysis (size/strain
analysis).

10.3 Learnt device functions

The raytraced fundamental parameters method may be used for modelling conventional X-ray diffrac-
tometers. However, the ray paths of modern X-ray optics, as well as PSDs resolution functions, may
not be described well using these techniques. For such devices, extraction of the geometric part G of
the device from reference lines (learnt peak profile approach) is required. This learned geometric part
may be used instead of a raytraced G.

The NIST peak position and peak profile reference material SRM 660a was certified for homogeneity
and lattice parameter [11]. Efforts were undertaken to achieve a minimum line broadening due to
size/strain and optimum grain statistics. A domain size of 2.0 μm and a microstrain below detection
limit were given as non-certified values. Electron-microscopic crystallite sizes were observed from 2
to 5 μm [11].

Due to the applied sieving procedure, the aggregated grains were restricted in size to 15 μm. This was
confirmed by LASER diffraction. Therefore (and due to the excellent purity), the reference material
SRM 660a is suitable for profile extraction. For doing so, first set up an parameter file srm660a.par
as follows:

PEAKZAHL=14 LAMBDA=CU POL=0.79951
4 3.589195E+001 2.4051308 0.0005705 0.000000036 F=37.266 H=6 1 0 0
4 6.007939E+001 3.4013685 0.0005316 0.000000071 F=48.772 H=12 1 1 0
4 2.713306E+001 4.1658087 0.0004443 0.000000107 F=48.923 H=8 1 1 1
4 3.396980E+001 5.3780359 0.0003047 0.000000178 F=40.833 H=24 2 1 0
4 1.893594E+001 5.8913431 0.0002399 0.000000214 F=33.389 H=24 2 1 1
4 7.517191E+000 6.8027371 0.0002199 0.000000285 F=34.504 H=12 2 2 0
4 2.000985E+001 7.2153923 0.0002388 0.000000321 F=26.380 H=6 3 0 0 F=42.092 H=24 2 2 1
4 1.038069E+001 7.9769163 0.0001902 0.000000392 F=33.422 H=24 3 1 1
4 6.856976E+000 8.6718223 0.0001643 0.000000463 F=29.654 H=24 3 2 0
4 1.410475E+001 8.9991752 0.0001658 0.000000499 F=31.165 H=48 3 2 1
4 6.335432E+000 9.9166081 0.0001527 0.000000606 F=27.816 H=24 4 1 0 F=32.507 H=24 3 2 2
4 3.618046E+000 10.4837219 0.0001328 0.000000677 F=26.042 H=24 3 3 1
4 9.094819E+000 11.0216937 0.0001427 0.000000749 F=30.611 H=48 4 2 1
4 4.216217E+000 11.2810632 0.0001393 0.000000784 F=30.175 H=24 3 3 2

Please take special attention to the lines at 1
d

of 7.2153923 and 9.9166081. Both these lines appear
twice in the ∗-output of the BGMN run, they must be unified each pair to one line. Otherwise,
VERZERR will run into trouble.

Simply set up a control file like:

STANDARDPAR=srm660a.par
VAL[1]=val\lp660afx150201.val
VAL[2]=val\lp660afx150202.val
VAL[3]=val\lp660afx150203.val
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VAL[4]=val\lp660afx150204.val
VAL[5]=val\lp660afx150205.val
VAL[6]=val\lp660afx150206.val
VAL[7]=val\lp660afx150207.val
VAL[8]=val\lp660afx150208.val
VAL[9]=val\lp660afx150209.val
VAL[10]=val\lp660afx150210.val
VERZERR=lab6
pi=2*acos(0)
POL=sqr(cos(26.6*pi/180))
WMIN=21.4
WMAX=120.7
WSTEP=3*sin(pi*zweiTheta/180)

The STANDARDPAR entry refers to the above file. For learning profiles on a conventional lab
diffractometer, one needs for a very accurate, multiple days measurement. For hiding the results
from long-term variations of the athmospheric etc. conditions, it is a good idea for measuring several
scans for one and the same setup. In the above example, the whole scan was measured 10 times.
The data will be accumulated by the VERZERR program. Another good idea is producing multi
scan data files, about seconds per step for the strong reflections and about minutes per step for the
weakest reflection. All that is of no need in case of more intensity (position sensitive detectors and/or
synchrotron radiation).

For the calculation, simply select Run→Verzerr, browse to the above file and hit OK. You will see
some lines of output. As a result, a file lab6.ger (similar to that produced by GEOMET) is created.
Similar to raytraced profiles, select Run→MakeGEQ and produce the interpolated profiles for usage
in BGMN.

10.4 Rules for profile analysis (size/strain analysis)

Our knowledge about size/strain analysis is still under heavy improvement. Nevertheless we want to
give some general hints on this theme:

• Real structure analysis/real structure description is a much wider area than just size/strain anal-
ysis. And, BGMN may answer much more real structure questions than just size/strain mea-
surements. For example have a look at [3].

• The first question is that about quality of real structure. Therefore you must check several
different real structure models, as we have done in the virgilite example. Giving an “exact”
value with low errors, but using a wrong model, is almost nonsense.

• Have special care in case of nearly perfect crystallites. In such cases you must use TubeTails
correction and a correct Kα description as given e.g. in [14].



Rietveld Analysis Program BGMN 81

Table 10.2: Comparison of raytraced fundamental parameters vs. learnt profiles

Raytraced profiles
(fundamental parameters)

Learnt profiles

Advantages

• More accurate

• None or only a short time
measurement needed

• Wide angular range (includ-
ing very low) available

May handle many geometric go-
niometer set-ups

Disadvantages

Restricted to the three common ge-
ometric conditions

• Symmetric reflection
(Bragg-Brentano)

• Symmetric transmission
(planar sample)

• Capillary

• Less accurate

• Needs for a multiple day cal-
ibration measurement

• Restricted to the angular
range of the reference lines
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Appendix A

Short reference

This chapter concerns the functions of the utilities including input parameters. The following expla-
nations are given as concluding remarks summarising and adding the content of the chapters before.
Possible text redundancies are written for your better understanding.

A.1 GEOMET

In GEOMET, the geometric profile shapes are modelled from theoretic data (slit positions, sample
size and collimator widths). For description of the device geometry, the program demands for a
number of necessary inputs to the control file ∗.sav. Denomination of divergence slits is based on
a horizontal configuration of the diffractometer measuring circle. Lengths and/or radii are input in
millimeters, angles in o (with the exception of Soller slits divergence angles: their units are radians).
The necessary and optional parameters are listed in the control file below:

AirScat may be set for defining an air scatter blocker (a metal plate perpendicular to the sample
surface, the goniometer axis within the plane of the plate). AirScat should be set to the
height of the blocker above sample surface. Valid only for GEOMETRY=REFLEXION.

DetW, DetH
Axial and equatorial dimensions of the detection slit; input necessary

DetArrayW
total equatorial dimension of a 1D array of detectors such as Vantec-1, Lynxeye (Bruker) or
X’Celerator (Panalytical). In such cases, DetW should be assigned the equatorial dimension
of a single detection unit and DetH the axial dimension of the detection units.

EPSG Target precision of fitting;

Default: 0.007, that corresponds to 0.7%

FocusH, FocusW
Axial and equatorial dimension of the X-ray tube’s focus; input necessary

FocusW means the optical focus width. Usually, the thermal focus dimensions are printed
on the X-ray tube. The optical focus width is reduced due to the take-off angle (usually
6o) between X-ray beam and anode surface. Usually the optical focus width (equatorial
dimension) is assumed as the 10th part of the thermal one.

FocusS, FocusA
Corrections for the focus, axial shift in mm and rotation around the radial axis through the
centre of the focus in o; optional
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GEOMETRY
Default REFLEXION;

If TRANSMISSION is input, the sample is computed in a position turned by 90 degrees.

In the case of CAPILLARY input, a capillary sample is taken for calculation.

GSUM Logical switch.

Default: N.

If it is true (Y) (GSUM=Y|y|J|j), an intensity correction of the form GSUM=... is put out
for each calculated profile. The intensity correction value is written to the file ∗.ger in cases
of, e.g., variable equatorial divergence slit or if the margins of the sample are irradiated.

HSlitR, HSlitW
Radius (ex centre of the sample) and width of the equatorial divergence slit; necessary pa-
rameter specification. The equatorial slit width may depend on i (no. of the calculated profile
in ∗.ger) or zweiTheta (2Θ) thus enabling the description of a variable vertical divergence
slit (with GSUM=Y).

MonR Distance between secondary monochromator and the goniometer axis, where the secondary
monochromator limits the beam path. Take DetH as axial dimension of the monochromator
crystal;

Default: R.

MonH Axial dimension of a secondary monochromator.

PColl Divergence angle of the primary collimator, e.g. 0.5/25, where 0.5 is the laminar distance
and 25 is the collimator length;

Default: no collimator, unit: radian.

R Radius of the goniometer circle; necessary parameter specification

SamplD
Diameter of a round sample; standard: infinite (greater than the illuminated area). Assuming
that the input value is too low, the sample will be irradiated. In this case, you should use
GSUM=Y. In the case GEOMETRY=CAPILLARY, SamplD or SamplH stand for the axial
capillary dimension.

SamplW, SamplH
Length and axial dimension of a rectangular, non-spinning sample;

Default: infinite.

SColl Divergence angle of the secondary collimator, see PColl;

Default: no collimator, unit: radian.

SSlitR, SSlitW
Radius (ex centre of the sample) and equatorial dimension (width) of a secondary anti-
scattering slit. The equatorial slit width may depend on i (no. of the calculated profile
in ∗.ger) or zweiTheta (2Θ) thus enabling the description of a variable anti-scattering
divergence slit (with GSUM=Y). Should be used, when using TubeTails correction. See
section 10.2).

TSlitH Axial dimension of a divergence slit limiting the focus immediately in front of the tube
window; optional. If TSlitH is specified, its radius must also be specified:
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TSlitR Specified radius.

TubeTails
File containing the measurement of tube tails, see section 10.2.

VERZERR
Name of the ∗.ger output file

VSlitR, VSlitH
Radius (ex centre of the sample) and axial dimension of the axial divergence slit. You must
specify either axial divergence slit or primary collimator.

ZweiTheta[1], zweiTheta[2]. . .
for i = 1 . . . Angular positions, at which the device function is calculated by GEOMET;
necessary parameter specification

When using GSUM, note, that this value is interpolated according to the step width WSTEP. In the
subsequent programs the geometry function is only subjected to linear interpolation. For that reason,
use angle step values that are sufficiently narrow.

A.2 VERZERR

In VERZERR, the geometric profile shapes are modelled from accumulated reference line measure-
ments. For this purpose, the program demands for a number of necessary inputs to the control file
∗.sav. The necessary and optional parameters are listed in the control file below:

VERZERR
Name of the ∗.ger result file.

GSUM optional parameter, see section above.

STANDARDPAR
Name of the ∗.par file containing the residual line widths of the reference sample.

VAL[i] Reference peak measurements to be accumulated.

LAMBDA
wavelength in case pattern data do not contain that.

SYNCHROTRON
wavelength of a synchrotron source, changes some of the internal behaviour of VERZERR.

NEUTRONS
wavelength of neutron CW data.

A.3 MAKEGEQ

As a next step the device function is interpolated. This is necessary, since GEOMET provides the
device function only for discrete angles. This interpolation is very time consuming. It should be
carried out before BGMN runs by means of MAKEGEQ. Corrections of the profile shape to consider
sample features (penetration depth of the radiation and finite sample thickness) are already carried out
in this interpolation.
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VERZERR is the only parameter necessary in the ∗.sav control file. To save storage capacity, the
interpolation result is output in binary form into the ∗.geq file. In the control file, the following
additional information is possible:

D Reciprocal linear attenuation coefficient of the sample material,
unit: mm

EPSG Default 0.007, demanded precision of interpolation

GEQ This parameter is used to generate the ∗.geq-file for the output. For default the name of the
VERZERR file is used.

R Radius of the goniometer

T Sample thickness or diameter of the capillary in the case of
GEOMETRY=CAPILLARY

WMIN Lower angle limit of interpolation;

Default: 20o

WMAX Upper angle limit of interpolation;

Default: 140o

WSTEP Step width for interpolation;

Default: 0.01o

When setting this parameter, it is quite possible to use even 0.1oor 1o, if the calculation of
MAKEGEQ will take too much time. This value may be a function of zweiTheta. For
example, 2*sin(zweiTheta*pi/180) could be a reasonable function.

A.4 BGMN

The Rietveld refinement is executed by the program BGMN standing for the name of the overall
system itself.

The kind of evaluation is determined by the ∗.sav control file. This file summarizes information on the
device function, measurement data and the sample structures to be refined. Additionally the program
uses global variables and parameters being valid for all phases.

We introduced the assignment statement PARAM=... to declare variables as parameters. You may
enter initial values that are necessary in most cases. These initial values may also be represented by
variables. But you may also enter static lower and upper limits of the following form:

PARAM=variable=initialvalue lowerlimitˆupperlimit

Note, that the last three elements can be written in any order.

Control file

The parameters necessary to control the calculation are described in the following list:

ANISOLIMIT
see LIMIT2
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ANISO4LIMIT
see LIMIT2

CUT[i] Common format: CUT[i]=wmin:wmax

It represents the corresponding angular sector (in 2Θ) which is to be eliminated from fitting.

i=1. . . (continuously without any gap)

DIAGRAMM
Enables the output of a file after each iteration step; this file consists of m lines with m =
number of measuring points. Each line contains 2Θ, measured intensity and fitted intensity.
This information is foreseen for further processing by other programs, e.g. for presentation.

EPS1. . . EPS4
These parameters describe angle corrections of the diagram: EPS1 is a constant to correct
malpositions of the tube or the detector. EPS2 is a factor proportional to cos(Θ) (sin(Θ)
during transmission) to correct eccentricity of the sample. EPS3 is proportional to sin(2Θ)
to correct penetration depth. EPS4, is a factor of the cot(2Θ) type foreseen to correct
divergence. Interpretation of parameters: EPS1: zero point, EPS2: sample displacement,
EPS3: sample transparency, EPS4: divergence shifting.

The use of ESP4 is recommended only for calculation without device function. Please
do not enter EPS3 in cases if the device function is corrected according to penetra-
tion depth. Furthermore you should reasonably specify EPS3 only in the case of
GEOMETRY=REFLEXION.

FCFOUT[i]
Output of observed and calculated F values plus phase angle in ShelX format. I have
chosen the No. 5 format from the ShelX 97 manual. Cited from those manual:

Write h, k, l, Fo, Fc, and f (phase angle in degree). . . This is indented for input
to some standard macromolecular FFT programs (such as W. Furey’s PHASES
program), thereby providing a possible route to a graphical display of the elec-
tron density.

All Fs and the phase angles are corrected for dispersion. This means: They really are
Fourier coefficents of electron density maps. See (newest) ShelX manual.

This output is disabled if the i-th phase uses the “user calculated structure amplitudes”
feature by defining FMult it its ∗.str file.

GOAL[i] Global goal, e.g. for experimental design, common format:

GOAL=term[=value][+-error]

=value is inserted after calculation and ignored during input.

+-error remains unchanged to be taken for output. It demands for subsequent experi-
mental design.

ITMAX Maximal number of iteration steps, valid for all iteration runs; reasonable default values
are used by the program automatically; change in extreme circumstances only.

LAMBDA
Some pattern data formats do not contain information concerning the used wavelengths
(GSAS or DAT) of are restricted to common X-ray anode materials. In such cases, one
may introduce such an entry for declaring the used wavelength. May point to common
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anode materials (e.g. LAMBDA=CU) or may set to a wavelength in Nanometers. In the
latter case, a sharp line with zero width (delta distribution) will be assumed.

LIMIT2, LIMIT4, LIMIT6, LIMIT8, LIMIT10, ANISOLIMIT and ANISO4LIMIT
These parameters are useful when using the SPHARx texture descriptions and/or any other
anisotropies ANISO during phase analysis. As explained on page 5.4, BGMN uses an
automatic, Laue Group dependent switch-off of SPHARx/ANISOx. But there may be
need for a phase specific switch-off, this is done by the LIMITx values.

After initial computation, if the isotropic weight of a phase and/or the isotropic variable
value drops down below the LIMITfold of its error, then it is simplified from SPHARx and
all more complex models. Below LIMIT2, simplification is carried out to an internal model
SPHAR0 corresponding to an isotropic scale factor. Below LIMIT4, it is simplified to
SPHAR2, below LIMIT6 to SPHAR4, below LIMIT8 to SPHAR6 and below LIMIT10
to SPHAR8. Below ANISO4LIMIT, ANISO4 is simplified to ANISOSQR and below
ANISOLIMIT to an isotropic substitute. Assigning a value of 0 will cause switch-off only
if the isotropic value from the first iteration becomes zero.

LIST Result file with information on the refinement result. In cases of missing file name (∗.lst),
the output will be in the screen.

NEUTRONS
should be used in cases of Neutron CW pattern data. Thus, bgmn uses bounded neutron
scattering lengths instead of atomic form factors. Simply assign the neutron’s wavelength.

NTHREADS
Number of threads as used by BGMN in parallel. Some parts of BGMN may calculate in
parallel on multi core processors. Depending on your problem, the computation time may
shrink down. You must tell BGMN how many threads it may use by

NTHREADS=...

You should specify the number of cores in your PC or less.

ONLYISO
If this parameter is different from “N” or “n”, a quick run is started. In this run only
isotropic iteration is performed no matter if there are anisotropies or preferred orientations
that might be specified. Note that anisotropies are calculated but not refined. That means,
they correspond to isotropy.

If a numerical value is specified for ONLYISO, then it is used as a relative termination limit
of isotropic iteration (default 10−4). The parameter is first of all used for testing complex
refinement models.

OUTPUT
Result file with all peak and background parameters (∗.par). This is a text file with para-
metric representation of internal format.

PARAM[i]
Global parameter definition of the following form:

PARAM[i]=name
PARAM[i]=name=initial value
PARAM[i]=name_lower limit
PARAM[i]=nameˆupper limit
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The last three attachments can be combined in any sequence, initialvalue must be available.
The parameter name is refined by calculation according to the specified limits.

POL Polarisation factor of the secondary monochromator. Not for parameterisation since the
graphite monochromator mostly used is an ideal mosaic crystal. Consequently it has the
polarisation factor of an ideal polycrystal that diffracts kinetically. Deviations in other
programs obviously result from insufficient profile shape. Its polarisation factor corrects
profile shape errors as a function of 2Θ.

cos2(2Θmonochromator) should be specified for POL. Specify
POL=sqr(cos(26.6*pi/180))with pi=2*acos(0) for graphite and copper radi-
ation.

Default: 1 (without secondary monochromator).

PROTOKOLL
Controls the protocol of the optimization algorithm. Screen protocol is enabled by Y or J.

Standard: N

PDBOUT[i] and RESOUT[i]
Result file of the individual phases in the format of the Brookhaven protein database (∗.pdb)
or of ShelX (∗.res). The pdb format is foreseen for use by RasMol (Sayle 1996). The
atomic identifiers are determined in accordance with the following ranking sequence:

• AtomName, a variable specified to atomic positions

• Identifier in molecular crystals, used in X(. . . ), Y(. . . ), Z(. . . )

• Corresponding entered atomic type in E=...

If necessary, these identifiers are given a number and a letter to mark them unambiguously.

PLAN List of measuring points as a result of experimental design.

RESOUT[i]
see PDBOUT[i]

RP Standard peak model, if not specified in the structure file; range of values: {2|3|4}.

RU Number of background parameters. In following the Lagrangian polynomial as used for
the background is of degree RU-1. If not specified – chosen automatically depending on
the extension of the diagram (proportional to ln WMAX

WMIN
).

In most cases, it is not necessary to enter RU.

STRUC[i]
∗.str structure files of the individual phases i.

STRUCOUT[i]
Result files of the individual phases in the structure file format ∗.str. The results are only
entered as new start values. The structure of the input file (line feed, sequence of expla-
nations) will be widely taken over. Thus you can continue a calculation using the results
of the last calculation. This result file does not replace the result file ∗.lst since it does not
contain any information on the anisotropic parameter values.
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SimpleSTRUCOUT[i]
Simple structure output. May be used as new input structure, as above. In contrary to
above, these structure files will contain no atomic positions data. Instead of, a full list of
structure amplitudes depending from h k l (and iref for compatibility) will be provided.

In case you want to convert a LeBail structure refinement into a Simple Structure output,
you must provide non-zero values of GEWICHT and density. They should contain values
as expected. E.g. while refining an 50:50 mixture of an internal standard and an unknown
phase, you should place an assignment of the GEWICHT value as refined for the internal
standard to GEWICHT inside the unknown phase (LeBail) structure.

SYNCHROTRON
should be used in case of syncrotron data, please assign the synchrotron wavelength in
Nanometers. Using SYNCHROTRON instead of LAMBDA changes some of the internal
behaviour of BGMN, for example Synchrotrons do not generate tube tails.

UNIT Output format for peak positions and peak widths by means of OUTPUT. It can be used
for output in Å units via UNIT=ANGSTROEM.

Default: UNIT=NM

UNT Background diagram with measured values in any of the possible VAL formats. It may be
used to correct an amorphous background or a phase of unknown structure, but available
pattern data. If this file is specified, a background polynomial is taken from only RU-1
parameters. The last background parameter refers to the rate of this UNT file. In case of
an amorphous background this file may have a greater increment and measurements for
this file could be carried out at wider divergence than the diagram to be analyzed. As a
recommendation, considering each measuring point, this file should be more precise than
the measurement itself.

UNTC Background diagram with measured values in any of the possible VAL formats. It may
be used to correct an amorphous background or a phase of unknown structure, but avail-
able pattern data. In contrary to UNT, this pattern will be added unscaled, no background
parameter will be used for scaling.

DDM If set to DDM=Y,the DDM method as described in

L. A. Solovyov
Full-profile refinement by derivative difference minimization
J. Appl. Cryst. ¡b¿37¡/b¿ (2004), pp. 743-749
http://www.geocities.com/l solovyov/ddm.html

will be used. As inherent to this Method, the number of background parameters RU is set
to zero. The DDM method is indented to cases with complicated background.

VAL[i] specicies the file(s) containing the raw pattern data. BGMN assumes patterns in free XY[E]
format, in general: Leading comments starting with # will be ignored, all following lines
may contain

1. angle 2Θ

2. intensity (cps)

3. (optionally) esd.



Rietveld Analysis Program BGMN 91

If esd is omitted, it will be calculated as the square root of the intensity.

Special file formats are chosen depending from the filename suffix:

∗.val files will be assumed to be in the APX file format of the firm SEIFERT FPM.

∗.rd files with be assumed to be in an old PHILLIPS format. In this case, the variable
STEPWIDTHmay be uses to assing a non-raster stepwidht (STEPWIDTH 	= n∗0.005)
of the pattern data (e.g. PHILLIPS format in conjunction with a scanning PSD from
SIEMENS).

∗.raw files will be assumed to be in an old SIEMENS format.

∗.gsa files will be assumed in GSAS format, restricted to equidistant angular steps (both the
variants STD and ESD of the GSAS data format).

Assignments must start with VAL[1]=..., the next file must be assigned with VAL[2]=...
and so on. Data are not allowed to be smoothed, Kα stripped, background corrected or cor-
rected in any other way. The files must contain the original measured data.

There will be no iteration if no pattern data are specified or if 0 data points remain (WMIN,
WMAX, CUT[i]), since all measuring points have been deleted. In these cases theoretical
results are calculated instead of iteration. The parameters are kept constant at their initial
values. No errors are computed. GOALs can be set and evaluated.

WMIN, WMAX
lower and/or upper angle limit in 2Θ of the diagram to be processed.

Any other variables can be defined — maybe as parameters. Subsequently these variables have global
effect for all structures.

Special case: Unknown device function

One can work without device function, if analyzing measurement data have been obtained by an
unknown device or if no device function has been determined yet. However the precision enabled by
the peak model is lost at large extent.

VERZERR=term is specified in the control file for BGMN. THETA is permitted as a part of the
term. This term becomes a squared Lorentzian width, specifying the peak width in Θ (unit radian). A
reasonable estimation disregarding all other influences could be as follows:

receivingslitwidth/(2*goniometerradius*sqrt(12))

In the control file, PARAM[i]=k3=0 0 and PARAM[j]=EPS4=0 should be specified together for
all phases. k3 describes line broadening as a result of divergence and EPS4 line shift resulting from
divergence. Please do not introduce parameters k3 and EPS4 if a device function is given!

Structure file

Anisotropic parameters

ParameterName=ANISOSQR and/or ParameterName=ANISOLIN automatically generates
each 6 parameters for description of a positively definite symmetrical matrix. Thus the value of the
parameter is calculated as a quadratic form via hkl. As guaranteed by the program, the correspond-
ing ellipsoid always fulfils the demands of symmetry of the crystal (e.g. in the case of B1, k2 and
GEWICHT see below) and/or the special point position (TDS). For this purpose the general position
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must be known. In cases without spacegroup the general position must be specified explicitly (see
below).

A quadratic form is introduced by ANISOSQR, the square root of a quadratic form by ANISOLIN.
The extension

x=ANISOLINˆupperlimit and/or x=ANISOSQRˆupperlimit

is implemented for both types. upperlimit is only valid for the initial iteration (isotropic approx-
imation). It is foreseen to overcome maybe false secondary minima.

Spacegroup, lattice constants and further phase-specific parameters

All phase-specific information is contained in the 1st line. Often the volume of one line is exceeded.
If the line limit is extended, terminate the partial line via continuation statement “//” and continue
with the next partial line. All characters behind “//” will be ignored.

Phase identification Phase identifiers are entered via PHASE=.... The name assigned this way
is used for the identifier in the output list and output table in the phase column. If PHASE is not
specified, the name of the ∗.str file is used as identifier of the output.

Spacegroup and lattice One can work with spacegroups and the corresponding Wyckoff notations.
Select a spacegroup by entering SpacegroupNo= and/or HermannMauguin= into the 1st line
of the ∗.str file. BASIS, Lattice, CellChoice, OriginChoice and/or UniqueAxis can be specified
additionally. All parameters result in the selection of a spacegroup from the spacegrp.dat file.

All entries listed must also be specified explicitly in the file spacegrp.dat. If BASIS e.g. is not
specified and is implicitly abstracted from HermannMauguin, then this parameter cannot be used
for the selection.

Entries of the lattice constants A, B, C, ALPHA, BETA, GAMMA are required in a usual manner
according to the lattice, e.g. only A and C for hexagonal or tetragonal spacegroups.

If there is no spacegroup specified, you may also specify the lattice by

Lattice={Triclinic|Monoclinic|Orthorhombic|Tetragonal|
Trigonal|Hexagonal|Rhombohedric|Cubic}

as well as the corresponding term

UniqueAxis={a|b|c}.

If there is no information available on Lattice (even not taken from a specified spacegroup), then
the default settings B=A, C=A, ALPHA=90, BETA=ALPHA and GAMMA=ALPHA are accepted. The
Lattice and uniqueAxis parameters are determined automatically according to the initial values of
the lattice constants. Even though the Lattice and uniqueAxis are not specified explicitly at all,
the necessary entries are predetermined for the ongoing calculation and corresponding information is
output. Take for example the hexagonal system, then the term PARAM=GAMMA=120 is ineffective.
GAMMA is constantly maintained at 120.

A, B and C are to be specified in nm (or, specify UNIT=ANGSTROEM).

When entering BASIS={P|I|F|A|B|C|R}, a lattice base is selected. Depending on the context,
different effects are possible:

• When entering a spacegroup, BASIS is considered for selection of the spacegroup.
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• If there is no entry on a spacegroup, the specified general and special co-ordinates are multiplied
by this BASIS value.

• If there is no entry on a structure (lattice is given without atomic positions), BASIS is used to
determine the reflection conditions.

If entering Pack={Y|y|J|j}, then the specified co-ordinates at PDB output are reduced to the unit
cell built up by RasMol.
If entering GeneralCondition=logical term, those reflections whose logical term will
become FALSE are omitted for calculations without atomic positions. The term may include the
Miller indices h, k, l.

Peak model A peak model for the phase is selected by RP. Default: RP=4.

The following peak models can be selected:

RP=2: Ideally crystalline substance, the peak model of the sample function (divergence and other
geometrical influences as well as spectral broadening have been eliminated) is a Delta func-
tion with 2 parameters: Intensity and s=1/d

RP=3: Real crystalline substance with broadening resulting from crystallite size and similar influ-
ences. The model of a peak contains 3 parameters: Intensity, s=1/d and width parameter
of the Cauchy function (B1 Lorentzian width). B1 must be specified either isotropic - for
spheric or specified cubic-shaped crystallites:

PARAM=B1=0_0

or anisotropic for sticks or platy crystals:

B1=ANISO respective B1=ANISOLIN ( no PARAM=)

RP=4: Real crystalline substance, in addition to RP=3 with Cauchy square broadening (squared
Lorentzian) by the square of the width parameter B2 which corresponds to σ2 of a Gaussian
function. Use in case of internal strain, dislocation densities, paracrystals (see k2 param-
eter) and more precise description of crystallite size distribution in addition to B1 (see k1
parameter). Either B2 or k1 or k2 or k3 must be specified.

If not specified as a formula, the standard notation of B2 is:

B2=k1*sqr(B1)+k2*sqr(sk)+k3*sqr(cot(2*THETA)*cos(THETA))

As an option, the user may define the parameters k1. . . k3 either as constants or parameters.
Default value in each case: 0. k1 and k2 describe the crystallite size distribution and internal
strain. k2 can be defined as anisotropic:

k2=ANISO respective k2=ANISOSQR
k2=ANISO4

k3 describes a shift resulting from divergence. Use of k3 is only permitted for calculations
without device function (in this case, however, use k3 in the ∗.sav files for all structures in
conjunction one with each other).

The ANISOxxxˆupperlimit notation is possible for B1 and k2.
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If you want to test your own width functions, you may enter the variables B1 (Lorentzian width), B2
(squared value of the squared Lorentzian width) and the constant RP into the first line of the ∗.str file.
The variables sk (=1/d) and h, k, l (Miller indices) can be used in the terms of B1, k1, k2 and B2.

It is not necessary to manually calculate the crystallite size from the B1 values. Use the
GrainSize(h,k,l) function instead of manual calculation (see also chapter “GOALs and ex-
perimental design”).

Phase content The GEWICHT parameter is a scale factor to adapt the diagram computed in the-
ory to the measured diagram. In addition, we may use this parameter to control whether preferred
orientation should be available or not.

GEWICHT must be specified if the atomic positions are specified. Parameterisation of an isotropic
GEWICHT (without preferred orientation) should have the following form:

PARAM=GEWICHT=0_0 or GEWICHT=SPHAR0

If the weight.mol file containing the molecular weights is available, then this scale corresponds to the
weight content of the phase. If this file is not available or the atoms are not registered inside, then the
scale corresponds to the volume content of the phase.

Use the statements GEWICHT=ANISO, GEWICHT=SPHAR2, GEWICHT=SPHAR4,
GEWICHT=SPHAR6, GEWICHT=SPHAR8 and GEWICHT=SPHAR10 to control modelling of
the preferred orientation.

• ANISO describes common (weakly changing) preferred orientations. In particular, this type
is not able to describe preferred orientations for cubic crystallites. Furthermore, it is also not
suitable for description of the equatorial dependence of the preferred orientation of hexagonal
crystallites.

• SPHAR2, SPHAR4, SPHAR6, SPHAR8 or SPHAR10 introduce a symmetrical tensor of
the 2nd, 4th, 6th, 8th and/or 10th level. Using this tensor, all even spherical harmonics up to the
2nd, 4th, 6th, 8th and/or 10th order are implemented. As a result, we obtain 6, 15, 28, 45 and/or
66 parameters which even may demand for independent definition in the triclinic case. In the
Laue groups resting, constraints are introduced upon general positions. Those constraints result
in obviously less parameters.

SPHAR stands for SPherical HARmonics. In simple cubic substances, ANISO/SPHAR2 only de-
scribes isotropy. In trigonal symmetries with SPHAR4 as well as in hexagonal symmetries with
SPHAR6, even equatorial dependencies can be described. For example, for the point group of quartz
which may be left/right screwing, left and right reflections are assigned differing scales (preferred
orientations).

SPHAR8/SPHAR10 were introduced for very strong preferred orientations, but it requires extreme
CPU time for adjustment of symmetries.

ANISO and SPHAR2 are differential concerning their structure: Whereas ANISO is based on a
quadratic positively definite matrix, SPHAR2 is based on the exponents of a quadratic common
matrix. Note, that in linear approximation (for weak preferred orientation), both approaches are
identical. In contrast to ANISO, SPHAR2 can be used to represent sharp textures in low-symmetric
Laue groups.

Debye-Waller-factor You may input a phase-specific parameter TDS for the temperature factor
(Debye-Waller-factor) into the first line of the structure file. The value of TDS corresponds to the
common B value, divided by 100 (because the default UNIT=NM)
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LIMIT2, LIMIT4, LIMIT6, LIMIT8, LIMIT10, ANISOLIMIT and
ANISO4LIMIT Analogously to the global limits specified in the control file, you may also enter
phase-specific limits for the anisotropies. For description of these limits, see chapter “Entries into the
control file”.

GOALs For the entire phase, you may enter GOALs of the GOAL=... type. For this topic, see
chapter “GOALs and experimental design”.

UNIT Related to a phase, you may decide to process all data in Å via UNIT=ANGSTROEM. Default:
UNIT=NM.

Atomic positions (optional):

The atomic positions are defined in the following lines. If there have not been specified any atomic
positions, then only the lattice constants, the peak shape parameters as described in the structure file
and one parameter for every peak (its intensity) parameters are refined. This is what we call “LeBail
refinement”.

In all else cases, atomic positions follows.

In case RefMult>1 is set, a LeBail refinement may be set for a single subphase by assigning its
number to LeBail:

LeBail=i

Multiple such assignments may be given to set multiple subphases to LeBail refinement.

Atomic type/ion Every atomic position begins with the entry E=... information. Mixed occupa-
tions may be entered, even parameterised. For example, the following equation

E=(CA+2,MG+2(p)) PARAM=p=0_0ˆ1

indicates a mixed allocation by Ca- and Mg ions. The proportion of components is refined via p
parameter.

Isotopic numbers may be given, and isotopic numbers may be combined with ionic charges. Example:

E=C12+4

Specific position When working with the spacegroup, specify the Wyckoff position Wyckoff=x
(x={a...α}) for each atomic position.

Atomic temperature factors Analogous to an entire phase, the calculation of the temperature fac-
tors can be controlled for each atom upon the TDS parameter.

If TDS is preset, an isotropic temperature factor of the form

Tk = e−TDS sin2 Θk
λ

is multiplied to the atomic form amplitudes. Except the unit nm2 instead of Å2 (in writing by decimals,
shift the value 2 places to the right). Thus TDS corresponds to the common B.
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To automatically introduce the set of six anisotropy parameters including start values and limits, we
use the entry TDS=ANISO. Constraints that consider the special position’s symmetry are abstracted
from the relation amongst special and general positions. In this case, an amplitude attenuation by

e−(h2β11+k2β22+l2β33+2hkβ12+2hlβ13+2klβ23).

is used. βij stands for six independent components of the symmetric tensor as identified in the result
list. In contrast to the isotropic TDS, there are no problems with units at all, because the hkl are
without dimension.

TDS=ANISOˆupperlimit can be used for TDS to omit maybe possible faulty minima. This upper
limit is valid for the first isotropic iteration run of BGMN.

GOALs You may enter goals of the type GOAL=... also for atoms. For this task see chapter
“GOALs and experimental design”.

Sequence of evaluation

The sequence of parameters to be processed one after the other corresponds to the sequence of pa-
rameters in the file. GOALs are computed later.

The lattice will be computed just when it is necessary first, but no later than behind the end of the first
line (see molecules). Parameter declarations using ANISO or SPHARx must be local to one structure
and declared after lattice definition. All other parameters may be declared as global.

Intensity and position corrections

For example, if a common TDS or the EPSx parameters are insufficient for user-specific correc-
tions, then we may also specify the variables DELTAzweiTheta or DELTAsk (optional) as well as
GEWICHT[1] in the first part of the ∗.str file. They may depend on sk ( 1

d
), zweiTheta (in o), H, F,

Finv and h, k, l (if there is only one reflection type of constant intensity). These variables result in
reflection shifts and/or changes of intensity following the GEWICHT[1] factor. Example:

PARAM=g=1ˆ2_0.5
GEWICHT[1]=p*GEWICHT

GEWICHT[1] holds an expression dependent on GEWICHT and other stuff.

Computation with structure amplitudes

One may even set FMult to a positive integer. In that case, BGMN will provide F[i] and phi[i]
for the absolute value resp. phase angle (in degree 0. . . 360) of complex structure amplitudes
(i=1...RefMult). From that, one may do arbitrary operations and at the end set the structural am-
plitude F of the whole phase, which will then used for intensity calculation. Having set e.g. FMult=3,
one may define an extended version of the atomic position descriptor like:

E(1,0,0)=CA+2

That example means: This atomic position contributes to F[1] with weight 1.0 and not to F[2], F[3].
The values for the inverse reflection are set to Finv[i] and phiinv[i].
BGMN serves a function F(phi,...) for dynamic computation of complex structure amplitudes.
For clarification: The atomic positions in part 2 of the structural description are evaluated prior to
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all Peak parameter evaluations. In difference, the atomic positions as defined in F(phi,...) are
evaluated for every call to that function. There are several advanageous applications of that func-
tion. Among them, a combination with cintegral allows computation of arbitrary distributions of
atoms/molecules in a given structure. Example:

FMult=1
F=cat(fmittelbetrag==cintegral(fi,F(psi,
D2(r1,r2,rot,EOZ1,eoz1,EOZ2,eoz2,EOZ3,eoz3,EOZ4,eoz4,EOZ5,eoz5,EOZ6,eoz6),
E=NA+1(pCA),Wyckoff=c,XYZ(ECA),TDS==tdsint,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz1),TDS==tdsH2O,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz2),TDS==tdsH2O,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz3),TDS==tdsH2O,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz4),TDS==tdsH2O,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz5),TDS==tdsH2O,
E=O-2(pOZ),Wyckoff=c,XYZ(eoz6),TDS==tdsH2O),
psi,rot,0,120)/120,
sqrt(sqr(F[1]*cos(pi*phi[1]/180)+fmittelbetrag*cos(pi*fi/180))+
sqr(F[1]*sin(pi*phi[1]/180)+fmittelbetrag*sin(pi*fi/180))))

calculates the structure amplitude for an arbitrary structure including a rotatin octahedron.

Sub-phases

Sub-phases represent a special approach. A multiplet of peaks for each reflection may be generated
setting RefMult to that value, e.g.

RefMult=3

These peaks consist of the scales GEWICHT[i], the width parameters B1[i] and B2[i] (for de-
fault abstracted from k1[i], k2[i] and k3[i]) as well as the correction parameters DELTAsk[i] and/or
DELTAzweiTheta[i].
By default, we use the values that are not subscribed or 0 (latter except for GEWICHT). The sub-
phases have common preferred orientations and lattice constants, in this way, it is for instance pos-
sible to represent sub-phases of the real structure. These sub-phases may share arbitrary common
parameters (also ANISO) since they are declared inside one ∗.str file. Sub-phases are also suit-
able for description of asymmetric peaks. Default: RefMult=1, enabling to correct intensity
by entering of GEWICHT[1]=f(GEWICHT). The actual peak index is available as the variable
(iref=1,...,RefMult), which can be used for selection within the non-subscribed variables
B1, B2, k1, k2, k3, DELTAsk, DELTAzweiTheta.

In case one uses both FMult and RefMult, you may achieve different values for F by using iref in the
calculation. The simplest form is e.g.

F=f[iref]

and then defining f[i].
In case there is no use of FMult, the extended version of E(a,b,c)= changes its sense. Having set e.g.
RefMult=3,

E(1,0,0)=CA+2

means: This atomic setting is present for the structure factor calculation of sub-phase 1 with weight
1 and not present for all the other two sub-phases. In following, the sub-phases may have different
structures at all. The weights may be any real values, even negative!
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Density and linear attenuation coefficient

BGMN provides the X ray densities and linear attenuation coefficients of the FMult sub-settings of
atomic positions in the pre-defined variables density[i] (in g

cm3 ) and my[i] (in μm−1). In case FMult
is not set, their values refer to the RefMult subphases.

In addition, BGMN provides predefined X ray denity and linear attenuation coefficients density and
my. In case of FMult, density and my are set to the sum of all atomic positions. Otherwise, density
and my are set to them calculated from the first sub-phase.

In many cases, one needs density[i] and my[i] to assign new values to density and/or my.

LeBail-refinement

Sometimes, one needs to refine all peak intensities as extra parameters. This may done by assigning
the number of the wanted subphase 1...RefMult to the variable LeBail. Multiple assignments
are possible for multiple subphases. In case no atomic positions are given at all, LeBail will be set
automatically for all subphases.

Molecules with known structure

Molecules can be defined in their Cartesian and/or atomic co-ordinates. Subsequently, these molecules
may be subjected to some general displacements in space. This includes translation as a whole and
rotation around 3 Eulerian angles. Parts of molecules may be turned around freely definable axes of
rotation (which are defined by 2 atoms or virtual positions that are introduced for definition purposes
— to define an axis of rotation, only). Subsequently, the resulting co-ordinates can be assigned to the
lattice coordinates. To carry out these manipulations, the following standard procedures have been
developed. Call these procedures upon the 1st line of the ∗.str file instead of using an assignment
statement.

angle(A,B,C)
computes the angle enclosed by the 3 atoms A, B, C

angle(A,B,C,D)
computes the torsion angle of the 4 atoms following the convention of signs in accordance
with the IUPAC-IUB convention in:

Biochemistry 9 (1970), 3471

angle(vec1,vec2)
computes the angle between the vectors vec1 and vec2 in o (0 ≤ angle ≤ 180). An error
occurs if one of both vectors is too small (about 0).

cross(p1,p2,p3,p4)
p1, p2 and p3 should be atomic identifiers specified via set. cross computes p4 as a
symbolic position, the p2–p4 link is orthogonal to p1–p2 and orthogonal to p2–p3 (cross
product). If p1, p2 and p3 are collinear, point p4 coincides with point p2.

D(p1,p2,fi,E. . . )
turns all E. . . positions around the p1–p2 axis (2 position identifiers) around the angle fi.
An error occurs if p1 and p2 are coincident.

D(p1,p2,fi,Ein,Eout. . . )
with odd parameter count is an abbreviation for cpXYZ(Ein,Eout. . . ) D(p1,p2,fi,Eout. . . )
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diffvec(p1,p2,vec)
assigns the difference of the p2–p1 position vectors to the vec vector (also a non-subscribed
name).

distance(p1,p2)
results in the scalar distance between the two atomic positions p1 and p2.

normvec(vec1,vec2)
assigns the unit vector to vec2 in the vec1 direction:

vec2=vec1/|vec1|

An error occurs if vec1 is too small (around 0).

skalpro(vec1,vec2)
computes the inner product of vec1 and vec2

set(E,x,y,z)
defines the E position. E is a general position identifier, e.g, C6 stands for the 6th carbon
atom with its Cartesian co-ordinates x, y, z.

setgitter(E,x,y,z)
defines the E position from its lattice (or fractional or atomic) co-ordinates x, y, z.

cpXYZ(a,b. . . )
with even parameter count: within each pair of parameters, the co-ordinates of the left one
are copied to the right-one. The right-one parameter may be a comma-separated list in
brackets:

cpXYZ(a,(b,c,d),e,f)

By this way, multiple copies are generated from one source.

T(x,y,z,theta1,theta2,theta3,E. . . )
rotates all E. . . positions for the 3 Eulerian angles theta1...theta3 around zero point.
As the second step, all E. . . positions are shifted by the Cartesian vector x, y, z.

T2(x,y,z,theta1,theta2,theta3,Ein,Eout. . . )
with even parameter count is an abbreviation for

cpXYZ(Ein,Eout...)
T(x,y,z,theta1,theta2,theta3,Eout...)

Angles are given in o, co-ordinates and displacements in Cartesian coordinates in nm (according to
the default value UNIT=NM) or Å (if UNIT=ANGSTROEM is set). Note, that all coordinates, displace-
ments and angles may be arbitrary parameters and terms.

Modify valency angle inside a molecule by angle fi as following:

cross(p1,p2,p3,p4)
D(p2,p4,fi,p3,e1,e2,e3,e4...)
D(p2,p4,fi,ex,...)

For stretching and/or compressing of a p1–p2 valency via coefficient s (-1<s<0: compressing, s>0:
stretching), use the formulations below:
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diffvec(p1,p2,t)
T(s*t[1],s*t[2],s*t[3],0,0,0,p2,e1,e2,e3,e4,...)
T(s*t[1],s*t[2],s*t[3],0,0,0,ex,...)

Use the following parameter combination to twist a molecule around the p1–p2 valency around the
angle fi:

D(p1,p2,fi,e1,e2,e3,...)
D(p1,p2,fi,ex,...)

The large number of introduced functions in molecule- and other lattices should be evaluated by
means of the vector functions cross, diffvec, normvec, skalpro and angle, if necessary making use
of the setgitter conversion function explained below. Some examples are:

1. Valency length A–B:

l==distance(A,B)

2. A–B–C valency angle

w==angle(A,B,C)

3. A–B–C–D torsion angles

w==angle(A,B,C,D)

4. Distance of point D beyond the ABC plane:

cross(A,B,C,x) diffvec(B,x,x) normvec(x,x)
diffvec(B,D,y) l==skalpro(y,x)

5. Out-of-plane angle of point D of B of the ABC plane:

cross(A,B,C,x) diffvec(B,x,x) diffvec(B,C,y)
w==angle(x,y)-90

6. Angle between 2 planes, each given by 3 points:

cross(A,B,C,x) diffvec(B,x,x)
cross(D,E,F,y) diffvec(E,y,y)
w==angle(x,y)

Remark: The authors paid special attention that the functions can be decomposed into several short
individual statements. In addition to the corresponding special function, we introduced the cross
auxiliary function for modification of a valency angle.

As to be seen in the example mentioned above, an E atomic position identifier which can be noted as
any non-indexed name introduces the 3 Cartesian co-ordinates E[1], E[2] and E[3] automatically.

These co-ordinates are applied via X, Y and Z coordinates which are assigned to the lattice coordinates
in the structure part of the ∗.str-file:

Hereby, X(E), Y(E) and Z(E) provide the corresponding x, y or z coordinates of the E position in
atomic coordinates. The inverse is setgitter(E,x,y,z) whereby the atomic coordinates are represented
by x, y, z. To avoid errors, lattice type and lattice constants should already be defined when using X,
Y and Z or setgitter.
You may use an abbreviation for
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x=X(E) y=Y(E) z=ZE

, simpy write XYZ(E).

Hereby, it is important to know the possibility of output in the ∗.pdb-format which is especially
essential for molecules.

Format of the ∗.lst result file

The LIST=... file includes all computation results, i.e. the computed parameter values and corre-
sponding errors. Errors are not indicated in cases if the parameter coincides with one of its limits or
if it is declared as anisotropic.

The number of the measuring points is indicated in the head. The four items following contain
commonly used R values. The value of Durbin-Watson statistics is in the succeeding line. It is
followed by 1-rho (quality parameter). In opposite to all R values, 1-rho should not depend on the
effect background ratio extremely.

1-rho is followed by all global parameters, these are the parameters specified in the ∗.sav control file.

As a next part, a local parameter set is given for each involved phase. The parameters of the file head
are specified first. The anisotropic GEWICHT is specified by average value (without errors). An
arithmetical as well as a geometric average (without errors) are indicated for anisotropic parameters
as B1=ANISOLIN or k2=ANISOSQR.

If one is interested to display errors for the GEWICHT average value, he can use a suitable GOAL
(see section “GOALs and experimental design”). This error calculation is only disabled for reasons
of computing time.

As a next part, the parameters of all atomic positions of the corresponding phase are given. For
TDS=ANISO, the complete symmetrical oscillation tensor is pointed out for the first atomic position
(without errors).

Automatic refinement strategy

Assume that there is a parameter specified by =ANISO, =ANISOLIN or =ANISOSQR or
GEWICHT=SPHARx for ≥ 1 phase or, respectively, TSD=ANISO for ≥ 1 atomic positions, then
refinement is performed in a lot of iteration runs. In the first run, to find out suitable initial values for
ongoing runs, isotropic approximations are used rather than anisotropic parameters.

The number of necessary iteration steps is calculated by the program automatically. In this way,
wrong parameter sets caused by premature termination of iteration are avoided. In cases of especially
insufficient convergence, a satisfying number of iteration steps is set as criterion for abortion.

A.5 Output

An output table for observation of the refined peaks is available at Tools→Show Peak List.

The output table consists of the following columns:

2 Theta
Angle of the peak (weighted average of alpha1 and alpha2)

Int Intensity in cps × o in the diagram; does not correspond to the first peak parameter in
the peak list ∗.par, but is recalculated from this and other parameters. To carry out all
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corrections regularly, OUTPUT reads the VERZERR variable and the associated files
analogously to BGMN.

% Intensity normalized to maximum peak=100%

d Lattice plane distance of the reflection

1/d Reciprocal lattice plane distance, corresponds to the 2nd peak parameter in the ∗.par peak
list

b1 if RP>2 for this phase: B1 corresponds to the Lorentzian width in the sample function.
If not specified otherwise: 0

b2ˆ2 if RP>3 for this phase: B2 corresponds to the square of the squared Lorentzian width
in the convolution product of the Lorentzian and the squared Lorentzian which is used as
sample function. If not specified otherwise: 0

PHASE Phase identifier, corresponds to PHASE=... in the ∗.str structure file

H Multiplicity

h, k, l
Miller indices; each is a representative for peaks equivalent according to symmetry

TEXTURE
Factor describing the deviation between reflection intensity and isotropic distribution.
Specified for anisotropic scales, only. Corresponds to the inverse pole figure on reflec-
tion position.

F associated variable identifying data, absolute of the |F| structure amplitude

d is given in nm, 1/d and B1 in nm−1, b2ˆ2 is given in nm−2.

A.6 Formula interpreter

All control files with .sav extension and structure files with .str extension are evaluated by a formula
interpreter. That means, most of control values can be assigned variables or complex expressions
rather than constants, only.

We explain the function of the formula interpreter by means of the calculation of the polarisation
factor

POL=sqr(cos(26.6*pi/180)),

taken as a simple example with variable pi which was assigned a value previously.

The ∗.sav control file consists of assignments and comments. Assignments are statements to link any
(sometimes indexed) variable names to values. A value may be a numerical value or a character string.
In special, character strings may hold arithmetical terms. A term may consist of: +-*/, pairwise
() nested into arbitrary depth, arbitrary variables, standard functions described below, specific user
functions. Concerning time and frequency, these terms are analyzed then and only then if request
and as often as demanded in the program. In cases the program requests this value of the variable
as a numerical value, then the program tries to analyze the character string as a term. In this case,
maybe further variables are analyzed as a term (recursive approach). Specific user functions which are
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ranking at the same priority as also the standard functions can also be assigned. Standard functions
may be overwritten by definitions of the user.

One can decide whether a variable is analyzed partially or completely just during its definition. The
multiple entry of the “=”. assignment operator is used for this determination:

A==B Variable A is assigned the value of variable B.

A==(B)
Variable B is evaluated as a term. The obtained result is assigned to A.

A=2*acos(0)
Variable A is assigned the character string 2*acos(0) that will be evaluated for π by the
program whenever necessary.

A==2*acos(0)
The value of π is directly numerically assigned to variable A (to be evaluated faster).

A= Variable A is deleted.

A== Variable A is assigned the empty character string of length 0.

A[1,2,3]=12
Assignment statement to an indexed variable.

factorial(1):ifthenelse(gt(#1,0),#1*factorial(#1-1),1)
Definition of n!, (factorial n) which is no standard function of the program.
factorial(1) means that this definition is only used, if called in conjunction with one
parameter. For instance, Prod(-2) means that the definition of prod is applied whenever
it is called with at least ≥ 2 parameters.

∗.sav control files may include comments beginning with “%” on the first line position. Concerning
logic membership, those comments are part of the assignment statement following. These comments
are deleted in conjunctions with the assignment statement. Consequently, more than one comments
cannot be placed one after the other. Otherwise, the comments would overwrite each other.

The following standard functions are available for general use:

numerical functions abs, sqr, sqrt, sin, cos, tan, asin, acos, atan,
log, exp with 1 argument;

numerical functions mod, power with 2 arguments;

min, max functions with variable argument number;

comparison functions with variable argument number: This functions accept at least two arguments:
ge, gt, le, lt, eq return 1.0 (TRUE), if the condition holds for each neighboured pair
of arguments, starting from the first. If some pair does not hold the condition, 0.0 (FALSE)
will be returned immedially, errors in following arguments will not cause this function to cause
errors.
ne looks for inequality between any pair (also not neighboured) of arguments. If two arguments
are equal, ne returns 0.0 (FALSE). Otherwise, ne returns 1.0 (TRUE);

logic operators and, or with variable number of arguments: evaluation is carried out in an
abridged manner, that is arguments in more right position remain unconsidered as soon as the
result has been found.
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cat function for command concatenation with variable number of arguments: the arguments are
evaluated in order, depending on its kind (term or assignment): the assignment statements are
executed, the terms are evaluated. At least one argument should be a term (no assignment
statement). The last of these terms is provided as result.

assignment function ergibt with 1 argument: transfers the argument in form of an assignment
statement to formula interpreter. TRUE result, if allocation was successful, otherwise FALSE;

ifdef function with variable argument number: it returns TRUE if all arguments may be evaluated
as a term (and connection, abridged evaluation occurs);

conditional function ifthenelse with 3 arguments: if the first argument is TRUE, the 2nd argu-
ment is analyzed and returned as result. Otherwise, the 3rd argument is given as result. As also
in the logic functions, there are analyzed only those arguments required! Thus, possible error
responses of the formula interpreter can be avoided;

function select with variable argument count: Depending on the value of the first argument i,
the value of the Argument number i + 1 will be returned. All the other arguments will not be
evaluated and therefore cause no error if undefined. An error occurs if the first argument will
be zero or below or exceeds the number of arguments as given for selection. Examples:

i=3
select(i,a,b,c)

will return the value of the variable c (if defined).

conditional loop while with variable argument number: The first argument must be an expression.
As long as its value is non-zero and no error occurs, all following arguments are evaluated.
Returns the number of loop iterations;

logic function not with 1 argument;

linear equation system solver gauss,cgauss are high-level standard functions for solving linear
equation systems. Called as

gauss(A,x,b,eps,n)
cgauss(Areal,Aimag,xreal,ximag,breal,bimag,eps,n)

A,x,b are placeholders for arrays, therefore only non-indexed names are allowed. Both the
standard functions solve the inhomogen linear equation system

Ax = b (A.1)

where

A =

⎛
⎜⎜⎝

A[1, 1] · · · A[1, n]
...

. . .
...

A[n, 1] · · · A[n, n]

⎞
⎟⎟⎠ (A.2)

x =

⎛
⎜⎜⎝

x[1]
...

x[n]

⎞
⎟⎟⎠ (A.3)

b =

⎛
⎜⎜⎝

b[1]
...

b[n]

⎞
⎟⎟⎠ (A.4)
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eps is a limit for the pivot element. If any pivot element has an absolute value smaller than eps
the equation leaves unsolved and zero (false) will be returned. If the equation system has been
solved and x[1]. . . x[n] hold the solution, 1 (true) will be returned.

cgauss is the complex equivalent to gauss. Therefore six placeholders are necessary, each
one for the real part and one for the imaginary part of A,x,b.

numeric integration function integral, cintegral implement a seven-point numeric inte-
gral with adaptive step width.

• integral(y,x,xu,xo) integrates the values as given in the first position (y), the
integration is carried out for x between xu and xo. An optionally fifth parameter will be
used for definition of the numeric integral’s precision. It defaults to 1E-13. Due to the fast
convergency of the 7-point formulae, the default value will serve a total precision of about
1E-15.

• cintegral(phi,yabs,yphase,x,xu,xo) is the equivalent function for complex
y values and therefore complex result. yabs is the absolute value of y, yphase is it’s
phase angle in degree. The result value is the absolut value of the complex result, it’s phase
angle will be set to the variable as given in the first position (phi). An optionally seventh
parameter will be used for definition of the numeric integral’s precision. It defaults to
1E-13. Due to the fast convergency of the 7-point formulae, the default value will serve a
total precision of about 1E-15.

Functions are written with parentheses, therefore: A=abs(a).



106 A Short reference



Appendix B

Examples

B.1 Files for the example in chapter “User’s Guide”

Control file Ringverz.sav for the GEOMET and MAKEGEQ run

% Titel of Calculation
TITEL=PbSO4_Round_Robin
% Name of ’Raytraced’ Goniometer Function
VERZERR=ringverz.ger
% Name of Interpolated Goniometer Function
GEQ=ringverz.geq
% Helper Variables
pi=2*acos(0)
rh=100
% Rowland Circle Radius
R=173
% Tube
FocusH=8
FocusW=0.04
% Divergence Slit
HSlitR=rh
HSlitW=(R-rh)*1*pi/180
% Primary Collimator
PColl=0.5*4.45*pi/180
% Sample
SamplH=20
SamplW=20
% Secondary Collimator
SColl=0.5*4.45*pi/180
% Detector Slit
DetH=15
DetW=0.2
% Secondary Monochromator
MonR=R+51
% 2Theta List for GEOMET
zweiTheta[1]=10
zweiTheta[2]=14
zweiTheta[3]=20
zweiTheta[4]=28
zweiTheta[5]=40
zweiTheta[6]=65
zweiTheta[7]=90
zweiTheta[8]=115
zweiTheta[9]=135
zweiTheta[10]=150
zweiTheta[11]=160
% Angle Range for MAKEGEQ
WMIN=10
WMAX=160
WSTEP=2*sin(zweiTheta*pi/180)
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Result file ringverz.ger to evaluate geometry function via GEOMET

GEOMETRY=REFLEXION
TITEL=PbSO4_Round_Robin
R=173
FocusH=8
FocusW=0.04
HSlitW=(R-rh)*1*pi/180
HSlitR=rh
PColl=0.5*4.45*pi/180
SamplH=10
SamplW=20
SColl=0.5*4.45*pi/180
DetH=15
DetW=0.2
MonR=R+51
THETA=5.0000 N=12
0.15029 0.0004560 0.00022151
0.09919 0.0006639 0.00028144
0.10133 0.0001843 0.00014601
0.08871 0.0009174 0.00036578
0.15725 0.0003011 0.00017542
0.01497 -0.0001888 0.00007240
0.06047 0.0027498 0.00146893
0.03136 -0.0001070 0.00008825
0.08190 0.0018203 0.00080576
0.07880 0.0000755 0.00012315
0.05246 -0.0000202 0.00010421
0.08946 0.0012665 0.00051647
THETA=7.0000 N=10
0.11571 0.0001373 0.00014872
0.14213 0.0004026 0.00019653
0.07351 0.0000197 0.00012589
0.16688 0.0002672 0.00016906
0.10144 0.0012086 0.00057307
0.01793 -0.0001772 0.00008101
0.11236 0.0008308 0.00037168
0.15595 0.0005702 0.00025667
0.07996 0.0018626 0.00107819
0.04043 -0.0000846 0.00010287
THETA=10.0000 N=10
0.16742 0.0004456 0.00021716
0.15125 0.0006214 0.00028793
0.03316 -0.0001201 0.00008712
0.10693 0.0009208 0.00044910
0.01432 -0.0001990 0.00006813
0.18791 0.0002963 0.00017310
0.07286 0.0014023 0.00079962
0.12350 0.0001780 0.00014594
0.05923 -0.0000308 0.00010621
0.09002 0.0000693 0.00012579
THETA=14.0000 N=9
0.24005 0.0002849 0.00018334
0.14767 0.0001622 0.00015007
0.20381 0.0004456 0.00023963
0.04425 -0.0001290 0.00008570
0.09688 0.0006824 0.00034901
0.01901 -0.0002065 0.00006816
0.07537 -0.0000423 0.00010428
0.06318 0.0010287 0.00058034
0.11664 0.0000537 0.00012518
THETA=20.0000 N=9
0.18636 0.0003849 0.00022832
0.03930 -0.0001703 0.00006867
0.01918 -0.0002318 0.00006088
0.09558 0.0006355 0.00042449
0.24984 0.0002593 0.00017111
0.15209 0.0001396 0.00013769
0.08574 -0.0000383 0.00009278
0.11992 0.0000441 0.00011342
0.05836 -0.0001065 0.00007839
THETA=32.5000 N=7
0.49435 0.0002374 0.00021946
0.05226 -0.0002064 0.00007004
0.11666 0.0001041 0.00013001
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0.11426 -0.0000663 0.00009947
0.08779 -0.0001410 0.00008388
0.01708 -0.0002656 0.00005927
0.12366 0.0000160 0.00011377
THETA=45.0000 N=6
0.21084 0.0002578 0.00014555
0.10599 -0.0002313 0.00011009
0.18764 0.0001515 0.00014439
0.18421 0.0000491 0.00013795
0.14546 -0.0001478 0.00011634
0.17217 -0.0000520 0.00012873
THETA=60.0000 N=6
0.05260 0.0002803 0.00008250
0.37340 -0.0002022 0.00018033
0.14859 -0.0000736 0.00013164
0.14920 0.0001252 0.00011352
0.10459 0.0002108 0.00009458
0.17711 0.0000268 0.00012904
THETA=67.5000 N=8
0.31690 -0.0002222 0.00016752
0.19494 -0.0000922 0.00014477
0.06104 0.0002317 0.00006957
0.14885 0.0000097 0.00011943
0.06425 -0.0004403 0.00027262
0.08504 0.0001677 0.00008228
0.02542 0.0002898 0.00005972
0.10962 0.0000955 0.00009776
THETA=75.0000 N=9
0.34209 -0.0002267 0.00017856
0.06584 0.0001713 0.00007437
0.04052 0.0002317 0.00005897
0.05845 -0.0006777 0.00039022
0.17571 -0.0000869 0.00014331
0.12559 0.0000150 0.00011520
0.09258 0.0000996 0.00009289
0.01482 0.0002839 0.00004751
0.09116 -0.0004358 0.00025167
THETA=80.0000 N=11
0.30574 -0.0002360 0.00017688
0.13293 -0.0001059 0.00013307
0.12210 -0.0004378 0.00025168
0.02890 0.0002335 0.00005248
0.05688 0.0001235 0.00007345
0.05534 -0.0010403 0.00056861
0.09494 -0.0000168 0.00010604
0.07273 0.0000586 0.00008686
0.01000 0.0002813 0.00004198
0.08320 -0.0006801 0.00035079
0.04366 0.0001816 0.00006258

Structure file for pbso4ani.str anglesite

PHASE=PbSO4 SpacegroupNo=62 PARAM=A=0.847 PARAM=B=0.539 PARAM=C=0.695
B1=ANISO PARAM=k1=1_0ˆ1 PARAM=k2=0_0 GEWICHT=SPHAR2 Pack=Y ANISOLIMIT=0
E=PB Wyckoff=c PARAM=x=0.188 PARAM=z=0.168 TDS=ANISO
E=S Wyckoff=c PARAM=x=0.063 PARAM=z=0.684 TDS=ANISO
E=O Wyckoff=c PARAM=x=0.910 PARAM=z=0.595 TDS=ANISO
E=O Wyckoff=c PARAM=x=0.185 PARAM=z=0.540 TDS=ANISO
E=O Wyckoff=d PARAM=x=0.077 PARAM=y=0.025 PARAM=z=0.813 TDS=ANISO

Control file pbso4ani.sav for refinement calculation via BGMN

% Geometry function
VERZERR=ringverz.geq
% Mesuring values in APX format
VAL[1]=pbso4.val
% Polarisation factor for sec. graphite monochromator
pi=2*acos(0)
POL=sqr(cos(26.6*pi/180))
% Starting structure
STRUC[1]=pbso4.str
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% Resulting structure
STRUCOUT[1]=pbso4.sto
% RasMol output
PDBOUT[1]=pbso4.pdb
% Shelx output for PowderCell
RESOUT[1]=pbso4.res
% Peak list
OUTPUT=pbso4.par
% Result listing
LIST=pbso4.lst
% Protocol output after every iteration step
PROTOKOLL=Y
% Zero point with starting value and limits
PARAM[1]=EPS1=2.88724209182800E-003_-0.005ˆ0.005
% Sample displacement with starting value
PARAM[2]=EPS2=-2.70422552073637E-003_-0.005ˆ0.005
EPS1==2.8872420918280000E-003
EPS2==-2.7042255207363740E-003

PowderCell result graph

For output of crystal structure, the pbso4.res file must be read in. Afterwards, enter spacegroup 62
and Wyckoff positions.

Figure B.1: Graphic representation of PbSO4 structure obtained via PowderCell

RasMol result graph

To display the unit cell as a black line against white background, insert the following entries in the
RasMol command line:

background white
set unitcell true
color axis black
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Figure B.2: Graphic representation of PbSO4 structure obtained by RasMol

ShelX result graph

Figure B.3: Graphic representation of PbSO4 structure using ellipsoids in accordance with the
anisotropic temperature factors
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B.2 Files for the example “Metashale Böhlscheiben” in transmis-
sion geometry

Control file Tran0205.sav for the GEOMET and MAKEGEQ run
% Device function XRD 3000TT in transmission
VERZERR=tran0205.ger
GEQ=tran0205.geq
GEOMETRY=TRANSMISSION
R=250
D=0.08
T=0.2
HSlitR=250-152
HSlitW=0.2
VSlitR=250-80
VSlitH=17
FocusH=12
FocusW=0.04
DetH=14
MonR=250+50
DetW=0.5
SamplD=20
PColl=0.5/25
zweiTheta[1]=6
zweiTheta[2]=10
zweiTheta[3]=16
zweiTheta[4]=24
zweiTheta[5]=34
zweiTheta[6]=48
zweiTheta[7]=60
zweiTheta[8]=90
zweiTheta[9]=120
WMIN=6
WMAX=120
GSUM=Y
pi=2*acos(0)
WSTEP=3*sin(pi*zweiTheta/180)

Quartz structure file quarz.str
PHASE=Quarz SpacegroupNo=154 //
PARAM=A=0.4913_0.485ˆ0.5 PARAM=C=0.5405_0.53ˆ0.55 GAMMA=120 //
PARAM=B1=0_0 PARAM=k1=0_0ˆ1 PARAM=k2=0_0 //
PARAM=GEWICHT=0_0 GOAL:quarz=GEWICHT
E=SI+4 Wyckoff=a x=0.465 TDS=0.002
E=O-2 Wyckoff=c x=0.415 y=0.268 z=0.786 TDS=0.0015

Chlorite structure file aphro1.str
PHASE=Aphrosiderit SpacegroupNo=5 HermannMaugin=C121 //
UniqueAxis=b //
PARAM=A=0.537_0.53ˆ0.54 PARAM=B=0.93_0.92ˆ0.94 //
PARAM=C=1.425_1.42ˆ1.435 PARAM=BETA=96.28_96.0ˆ97.5 //
PARAM=B1=0_0ˆ0.005 PARAM=k1=0_0ˆ1 PARAM=k2=0_0 //
GEWICHT=SPHAR2 GOAL:aphro1=GEWICHT TDS=0.017
E=MG+2 Wyckoff=a y=0
E=(MG+2(1-p),FE+3(p)) p=0.25 Wyckoff=a y=0.33
E=FE+3(p) p=0.9 Wyckoff=a y=0.667
E=(AL+3(1-p),FE+2(p)) p=0.25 Wyckoff=b y=1/2
E=(AL+3(1-p),FE+2(p)) p=0.25 Wyckoff=b y=0.167
E=MG+2(p) p=0.75 Wyckoff=b y=0.833
E=(SI+4(1-p),AL+3(p)) p=0.7 Wyckoff=c x=0.226 y=1/2 z=0.193
E=(SI+4(1-p),AL+3(p)) p=0.2 Wyckoff=c x=0.226 y=0.167 z=0.193
E=O-2 Wyckoff=c x=0.19 y=0.17 z=0.072
E=O-2 Wyckoff=c x=0.19 y=1/2 z=0.072
E=O-2 Wyckoff=c x=0.017 y=0.068 z=0.235
E=O-2 Wyckoff=c x=0.517 y=0.117 z=0.235
E=O-2 Wyckoff=c x=0.192 y=0.328 z=-0.235
E=O-2 Wyckoff=c x=0.707 y=0.314 z=0.072
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E=O-2 Wyckoff=c x=0.117 y=-0.025 z=0.435
E=O-2 Wyckoff=c x=0.157 y=0.333 z=0.435
E=O-2 Wyckoff=c x=0.117 y=0.683 z=-0.435

Muscovite structure file mus2m1n.str

PHASE=Muskovit_2M1 SpacegroupNo=15 HermannMauguin=C12/c1 //
UniqueAxis=b //
PARAM=A=0.5184_0.51ˆ0.53 PARAM=B=0.8993_0.89ˆ0.91 //
PARAM=C=2.0069_2.0ˆ2.1 PARAM=BETA=95.69_94.5ˆ96.0 //
B1=ANISO PARAM=k1=0_0ˆ1 k2=ANISO //
GEWICHT=SPHAR6 GOAL:mus2m1=GEWICHT
E=(AL+3(1-p),FE+3(p)) p=0.04 Wyckoff=f x=0.251 y=0.0838 z=0.0004 TDS=0.0074
E=K+1(p) PARAM=p=0.9_0.7ˆ1 Wyckoff=e y=0.0986 TDS=0.0164
E=(SI+4(1-p),AL+3(p)) p=0.25 Wyckoff=f x=0.0345 y=0.4295 z=0.3646 TDS=0.0071
E=(SI+4(1-p),AL+3(p)) p=0.25 Wyckoff=f x=0.4514 y=0.2582 z=0.1355 TDS=0.0049
E=O-2 Wyckoff=f x=0.0429 y=0.0617 z=0.4501 TDS=0.0117
E=O-2 Wyckoff=f x=0.3836 y=0.2511 z=0.0536 TDS=0.0118
E=O-2 Wyckoff=f x=0.0380 y=0.4447 z=0.4463 TDS=0.0088
E=O-2 Wyckoff=f x=0.4128 y=0.0925 z=0.1682 TDS=0.008
E=O-2 Wyckoff=f x=0.2516 y=0.3726 z=0.1688 TDS=0.0088
E=O-2 Wyckoff=f x=0.2469 y=0.3083 z=0.3426 TDS=0.004

Albite structure file albtief1.str

PHASE=Albit SpacegroupNo=2 HerrmannMaugin=C-1 BASIS=C //
PARAM=A=0.8144_0.812ˆ0.817 PARAM=B=1.2787_1.27ˆ1.29 //
PARAM=C=0.716_0.705ˆ0.725 PARAM=ALPHA=94.26_93.0ˆ96 //
PARAM=BETA=116.6_116ˆ117 PARAM=GAMMA=87.67_87.0ˆ89.0 //
RP=3 PARAM=B1=0_0ˆ0.004 //
GEWICHT=SPHAR2 GOAL:albit=GEWICHT
E=(NA+1(p)) Wyckoff=i p=0.45 TDS=0.06 x=0.2675 y=0.9802 z=0.151
E=(NA+1(p)) Wyckoff=i p=0.55 TDS=0.06 x=0.2653 y=0 z=0.1385
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.91 x=0.0095 y=0.1680 z=0.2075
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.05 x=0.0053 y=0.8207 z=0.238
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.09 x=0.691 y=0.110 z=0.3105
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.04 x=0.6797 y=0.8818 z=0.3595
E=O-2 Wyckoff=i TDS=0.0015 x=0.0065 y=0.1283 z=0.9678
E=O-2 Wyckoff=i TDS=0.0015 x=0.5905 y=0.9962 z=0.2785
E=O-2 Wyckoff=i TDS=0.0035 x=0.8169 y=0.1070 z=0.1943
E=O-2 Wyckoff=i TDS=0.0035 x=0.8191 y=0.8525 z=0.2612
E=O-2 Wyckoff=i TDS=0.0035 x=0.0095 y=0.3011 z=0.268
E=O-2 Wyckoff=i TDS=0.0015 x=0.0247 y=0.6936 z=0.2295
E=O-2 Wyckoff=i TDS=0.0015 x=0.2085 y=0.1087 z=0.3885
E=O-2 Wyckoff=i TDS=0.0015 x=0.1844 y=0.8674 z=0.4345

Microcline structure file micmax.str

PHASE=Micmax SpacegroupNo=2 HerrmannMaugin=C-1 BASIS=C //
PARAM=A=0.8581_0.845ˆ0.875 PARAM=B=1.2961_1.285ˆ1.31 //
PARAM=C=0.7223_0.715ˆ0.735 PARAM=ALPHA=90.65_90.0ˆ92 //
PARAM=BETA=115.94_115ˆ117 PARAM=GAMMA=87.63_86.5ˆ89.5 //
RP=3 PARAM=B1=0_0ˆ0.005 //
PARAM=GEWICHT=0_0 GOAL:micmax=GEWICHT
E=K+1 Wyckoff=i x=0.283 y=-0.0067 z=0.1388
E=SI+4 Wyckoff=i x=0.7059 y=0.8856 z=0.3507
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.9 x=0.0104 y=0.1875 z=0.2169
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.03 x=0.0097 y=0.8198 z=0.2327
E=(SI+4(1-p),AL+3(p)) Wyckoff=i p=0.07 x=0.7110 y=0.1202 z=0.3399
E=O-2 Wyckoff=i x=0.6365 y=0.0058 z=0.2853
E=O-2 Wyckoff=i x=0.0007 y=0.1448 z=-0.0179
E=O-2 Wyckoff=i x=0.8202 y=0.1476 z=0.2205
E=O-2 Wyckoff=i x=0.8316 y=0.8570 z=0.2416
E=O-2 Wyckoff=i x=0.0352 y=0.3203 z=0.2514
E=O-2 Wyckoff=i x=0.0366 y=0.6953 z=0.2689
E=O-2 Wyckoff=i x=0.1911 y=0.1229 z=0.4053
E=O-2 Wyckoff=i x=0.1753 y=0.8742 z=0.4127
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Control file for refinement by BGMN
% Device Function XRD 3000TT, Transmission Geometry
VERZERR=tran0205.geq
% Mean particle size for Brindley correction
d=5
% Measuring values
VAL[1]=tbtr78.val
% Polarisation factor for secondary monochromator
pi=2*acos(0)
POL=sqr(cos(26.6*pi/180))
% Phases
STRUC[1]=quarz.str
STRUC[2]=aphro1.str
STRUC[3]=mus2m1n.str
STRUC[4]=albtief1.str
STRUC[5]=micmax.str
STRUC[6]=rutile.str
% Quantitative analysis
GOAL[1]=quarz/(quarz+aphro1+mus2m1+albit+micmax+rutile)
GOAL[2]=aphro1/(quarz+aphro1+mus2m1+albit+micmax+rutile)
GOAL[3]=mus2m1/(quarz+aphro1+mus2m1+albit+micmax+rutile)
GOAL[4]=albit/(quarz+aphro1+mus2m1+albit+micmax+rutile)
GOAL[5]=micmax/(quarz+aphro1+mus2m1+albit+micmax+rutile)
GOAL[6]=rutile/(quarz+aphro1+mus2m1+albit+micmax+rutile)
% Result files
OUTPUT=tbtr78.par
LIST=tbtr78.lst
DIAGRAMM=tbtr78.dia
% Angle correction parameters
PARAM[1]=EPS1=0
PARAM[2]=EPS2=0
% Minimum angle
WMIN=6
% Iteration protocol
PROTOKOLL=Y

B.3 Files or learnt peak profiles
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Additional data files

C.1 Format of the spacegrp.dat spacegroup file

The user may enlarge the spacegrp.dat file according to the following rules: Each entry starts with
a line that identifies the spacegroup. The lattice base is the only information necessary. However, it
can be implicitly derived from the first letter of the Hermann-Mauguin symbol. Following entries are
permitted:

SpacegroupNo= Number according to International Tables

HermannMauguin=
abbreviated or full-length Hermann-Mauguin symbol

Lattice= One of
{Triclinic|Monoclinic|Orthorhombic|Tetragonal|
Trigonal|Hexagonal|Rhombohedral|Cubic}

UniqueAxis= {a|b|c} (Default: c)

CellChoice=

OriginChoice=

Setting=

The Wyckoff positions of the spacegroup are entered following. The first one is the general position,
whereas the last one must be specified as Wyckoff=a. Each Wyckoff position contains the entries
Wyckoff=... and N=... (for multiplicity). Entry of Wyckoff positions is followed by a count
of lines with number N divided by the multiplicity of the base as retrieved from the first letter of the
HermannMauguin symbol. Every of those lines contains a coordinate triplet analogous to the Interna-
tional Tables. After changes, you should call the SPACEGRP.EXE program to test whether the file is
correct. If the special positions coincide with general position, you only get some information about
the spacegroup just being checked. For each error, there are displayed error message and remarks on
possible reasons.

C.2 Atomic form amplitudes

The afaparm.dat file contains atomic form amplitudes for neutral atoms and ions in parametric repre-
sentation. Entry e-1 was inserted to incorporate individual “localized” electrons into a structure
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% Normal X-Ray scattering factors for Elements and Ions, cited from
% different sources. This file afaparm.dat is copyrighted to
% J. Bergmann Dresden 1991.
e-1 0 0 0 0 0 0 0 0 1
H 0.48992 20.6593 0.26200 7.74039 0.19677 49.5519 0.04988 2.20159 0.00130
HE 0.76844 10.9071 0.72694 4.30779 0.27631 1.33127 0.21572 25.6848 0.01249
LI 0.99279 4.33979 0.87402 1.26006 0.84240 98.7088 0.23101 212.088 0.05988
LI+1 6.08475 0.00498 0.86773 1.53730 0.80588 4.28524 0.17720 9.81413 -5.93560
BE 2.22744 0.04965 1.55249 42.9165 1.40060 1.66379 0.58290 100.361 -1.76339
BE+2 5.69034 -0.01336 1.19706 0.39000 1.03057 1.97441 0.20150 4.90642 -6.11950
B 2.03876 23.0888 1.41491 0.97848 1.11609 59.8985 0.73273 0.08538 -0.30409
C 1.93019 12.7188 1.87812 28.6498 1.57415 0.59645 0.37108 65.0337 0.24637
N 12.7913 0.02064 3.28546 10.7018 1.76483 30.7773 0.54709 1.48044 -11.3926
O 2.95648 13.8964 2.45240 5.91765 1.50510 0.34537 0.78135 34.0811 0.30413
O-1 3.22563 18.4991 3.01717 6.65680 1.42553 0.40589 0.90525 61.1889 0.42362
O-2 3.7504 16.5131 2.9429 6.5920 1.5430 0.3192 1.6209 43.3486 0.2421
F 3.30393 11.2651 3.01753 4.66504 1.35754 0.33760 0.83645 27.9898 0.48398
F-1 3.63220 5.27756 3.51057 14.7353 1.26064 0.44226 0.94071 47.3437 0.65340
NE 3.71272 3.91091 3.52631 9.63126 1.19237 0.40483 0.83080 23.9546 0.73728
NA 5.26400 4.02579 2.17549 10.4796 1.36690 0.84222 1.08859 133.617 1.09912
NA+1 3.99479 3.11047 3.37245 7.14318 1.13877 0.40692 0.65118 15.7319 0.84267
MG 5.59229 4.41142 2.68206 1.36549 1.72235 93.4885 0.73055 32.5281 1.26883
MG+2 4.30491 2.55961 3.14719 5.60660 1.12859 0.41574 0.49034 11.4840 0.92893
AL 5.35047 3.48665 2.92451 1.20535 2.27309 42.6051 1.16531 107.170 1.28489
AL+3 4.17448 1.93816 3.38760 4.14553 1.20296 0.22875 0.52814 8.28524 0.70679
SI 5.79411 2.57104 3.22390 34.1775 2.42795 0.86937 1.32149 85.3410 1.23139
SI+4 4.43918 1.64167 3.20345 3.43757 1.19453 0.21490 0.41653 6.65365 0.74630
P 6.92073 1.83778 4.14396 27.0198 2.01697 0.21318 1.53860 67.1086 0.37870
S 7.18742 1.43280 5.88671 0.02865 5.15858 22.1101 1.64403 55.4651 -3.87732
CL 9.83957 -0.00053 7.53181 1.11119 6.07100 18.0846 1.87128 45.3666 -8.31430
CL-1 18.0842 0.00129 7.47202 1.12976 6.46337 19.3079 2.43918 59.0633 -16.4654
AR 16.8752 -0.01456 8.32256 0.83310 6.91326 14.9177 2.18515 37.2256 -16.2972
K 8.11756 12.6684 7.48062 0.76409 1.07795 211.222 0.97218 37.2727 1.35009
K+1 9.70659 0.59947 7.37245 11.8765 5.67228 -0.08359 1.90688 26.7668 -6.65819
CA 8.60272 10.2636 7.50769 0.62794 1.75117 149.301 0.96216 60.2274 1.17430
CA+2 13.2063 0.39466 11.0586 -0.08204 7.73221 9.62976 1.72057 20.3341 -15.7176
SC 9.06482 8.77431 7.55526 0.53306 2.05017 123.880 1.28745 36.8890 1.03849
SC+3 13.4008 0.29854 8.02730 7.96290 1.65943 -0.28604 1.57936 16.0662 -6.66668
TI 9.54969 7.60579 7.60067 0.45899 2.17223 109.099 1.75438 27.5715 0.91762
TI+3 17.7344 0.22061 8.73816 7.04716 5.25691 -0.15762 1.92134 15.9768 -14.6519
TI+4 19.5114 0.17885 8.23473 6.67018 2.01341 -0.29263 1.52080 12.9464 -13.2803
V 10.0661 6.67721 7.61420 0.40322 2.23551 98.5954 2.23170 22.5720 0.84574
V+2 9.34513 6.49985 7.68833 0.39491 2.94531 15.9868 0.26998 41.0832 0.75143
V+3 9.43141 6.39535 7.74190 0.38339 2.15343 15.1908 0.01686 63.9690 0.65657
V+5 15.6887 0.67900 8.14208 5.40135 2.03081 9.97278 -9.57602 0.94046 1.71430
CR 10.4757 6.01658 7.51402 0.37426 3.50115 19.0654 1.54902 97.4599 0.95226
CR+2 9.54034 9.66078 7.75090 0.34426 3.58274 13.3075 0.50911 32.4224 0.61690
CR+3 9.68090 5.59463 7.81136 0.33439 2.87603 12.8288 0.11357 32.8761 0.51827
MN 11.2519 5.34818 7.36935 0.34373 3.04107 17.4089 2.27703 84.2139 1.05195
MN+2 9.78094 4.98303 7.79153 0.30421 4.18544 11.4399 0.72736 27.7750 0.51454
MN+3 9.84521 4.91797 7.87194 0.29439 3.56531 10.8171 0.32361 24.1281 0.39397
MN+4 9.96253 4.84850 7.97057 0.28330 2.76067 10.4852 0.05445 27.5730 0.25188
FE 11.9185 4.87394 7.04848 0.34023 3.34326 15.9330 2.27228 79.0339 1.40818
FE+2 10.1270 4.44133 7.78007 0.27418 4.71825 10.1451 0.89547 24.8302 0.47888
FE+3 10.0333 4.36001 7.90625 0.26250 4.20562 9.35847 0.55048 20.4105 0.30429
CO 12.6158 4.48994 6.62642 0.35459 3.57722 14.8402 2.25644 74.7352 1.91452
CO+2 10.5942 4.00858 7.67791 0.25410 5.15947 9.21931 1.01440 22.7516 0.55358
CO+3 10.3380 3.90969 7.88173 0.23867 4.76795 8.35583 0.72559 18.3491 0.28667
NI 13.3239 4.17742 6.18746 0.38682 3.74792 14.0123 2.23195 71.1195 2.49899
NI+2 11.1650 3.65944 7.45636 0.24397 5.51106 8.52596 1.09496 21.1647 0.77218
NI+3 10.7806 3.54770 7.75868 0.22314 5.22746 7.64468 0.84711 16.9673 0.38604
CU 13.9352 3.97779 5.84833 0.44555 4.64221 13.3971 1.44753 74.1605 3.11686
CU+1 12.4655 3.54270 6.63111 0.28920 5.76679 9.31140 1.34230 26.9799 1.79285
CU+2 11.8168 3.37484 7.11181 0.24408 5.78135 7.98760 1.14523 19.8970 1.14431
ZN 14.6744 3.71486 5.62816 0.50033 3.92540 12.8862 2.16398 65.4071 3.59838
ZN+2 12.5225 3.13961 6.68507 0.25431 5.98382 7.55544 1.17317 18.8453 1.63497
GA 15.3412 3.63868 5.74150 0.65640 3.10733 16.0719 2.52764 70.7609 4.26842
GA+3 12.6920 2.81262 6.69883 0.22789 6.06692 6.36441 1.00660 14.4122 1.53545
GE 15.4378 3.39715 6.00432 0.73097 3.05158 18.9533 2.93572 63.7969 4.56068
AS 15.4043 3.07517 6.13723 0.74113 3.74679 21.0014 3.01390 57.7446 4.69149
SE 15.5372 2.71530 5.98288 0.68962 4.83996 21.0079 2.93549 52.4308 4.70026
BR 15.9934 2.35651 6.02439 19.7393 5.51599 0.58143 2.88716 47.3323 4.57602
BR-1 15.4080 2.43532 6.78083 22.0832 6.00715 0.68621 2.99332 64.9193 4.80234
KR 16.8494 2.01856 7.19790 18.0409 4.92564 0.39741 2.91606 42.5054 4.10864
RB 11.4809 1.08140 9.46904 18.2800 9.16981 2.38825 1.42608 185.293 5.43921
RB+1 17.8943 1.71750 8.59341 0.09258 7.91428 15.4484 2.47499 32.5110 -0.87756
SR 11.6164 1.85574 9.73009 14.6109 8.68081 0.89852 2.60986 139.830 5.34841
SR+2 18.2430 1.51215 8.90811 13.6536 1.69192 27.8238 -32.1118 -0.01488 39.2691
Y 19.0567 1.24615 6.50783 9.68019 4.81524 18.8903 2.84786 121.353 5.76121
Y+3 18.4202 1.34457 9.75213 12.0631 1.05270 25.1684 -33.4755 -0.01023 40.2513
ZR 19.2273 1.15488 10.1378 10.7877 2.48177 120.126 2.42892 33.3722 5.71886
ZR+4 19.1301 1.16051 10.1098 10.4084 0.98896 20.7214 -0.00004 -3.20442 5.77164
NB 19.3496 1.06626 10.8737 10.5977 3.47687 32.6174 1.64516 120.397 5.65073
NB+3 19.1248 1.07235 18.2989 0.00315 11.0121 10.3385 2.04325 25.9292 -12.4799
NB+5 19.0175 1.06028 10.7591 9.36239 1.09900 0.03765 0.48469 20.9764 4.64045
MO 19.3885 0.97877 11.8308 10.0885 3.75919 31.9738 1.46772 117.932 5.55047
MO+3 19.6761 0.95118 18.0893 -0.00669 11.7086 9.61097 2.50624 24.0356 -12.9813
MO+5 19.6054 0.94029 17.9292 -0.00795 11.3451 8.76715 1.04247 19.3690 -12.9217
MO+6 19.4800 0.94043 17.6328 -0.00723 11.0940 8.29745 0.37154 18.9700 -12.5778
TC 19.3597 0.89356 12.8087 9.27497 3.41372 32.3513 1.99926 107.406 5.41556
RU 19.4316 0.82092 13.7309 8.97737 4.26537 28.2621 1.28720 111.501 5.28192
RU+3 20.8024 0.74711 13.2995 8.36626 3.27542 20.6179 2.21026 -0.14664 1.41087
RU+4 41.5821 0.61466 12.9936 7.99801 2.71276 18.1564 -24.2593 0.43857 6.97025
RH 19.4524 0.75019 14.6845 8.42622 4.50240 26.1564 1.24740 107.780 5.11007
RH+3 25.0958 0.61346 14.1510 7.80244 3.64428 19.0932 -12.5768 0.13532 11.6838
RH+4 41.5236 0.52905 13.8272 7.49419 3.07969 16.9498 -25.9694 0.32686 8.53824
PD 19.5123 0.68583 15.3800 7.95714 5.38330 23.1808 0.81015 65.9295 4.91427
PD+2 19.4652 0.68159 15.5805 7.80880 4.04748 20.9573 0.02216 110.020 4.88510
PD+4 51.1288 0.43734 14.6979 7.03139 3.41607 15.8623 -38.2678 0.26589 11.0241
AG 19.5284 0.62387 16.5811 7.39504 4.99150 22.2282 1.21404 100.226 4.68114
AG+1 19.5416 0.62273 16.4239 7.39663 5.12995 20.5530 0.24053 59.0604 4.66470
AG+2 19.5152 0.62050 16.4852 7.30347 4.32525 19.3673 0.02777 92.9184 4.64695
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CD 19.5528 0.56604 17.5717 6.79630 4.47374 21.2907 1.98562 85.2777 4.41158
CD+2 19.5901 0.56389 17.3740 6.83082 4.62594 17.8856 0.03770 76.2909 4.37269
IN 19.5872 0.51510 18.7169 6.29430 4.02722 22.7308 2.51452 88.5675 4.14542
IN+3 19.6698 0.50926 18.1942 6.28098 4.09851 15.4189 0.00365 160.227 4.03396
SN 19.6527 0.46604 19.5108 5.76321 3.86895 24.0627 3.14764 78.1533 3.81227
SN+2 19.7166 0.46027 18.9265 5.66448 3.79775 17.7248 1.86248 42.8086 3.69648
SN+4 19.7914 0.45879 18.9162 5.76682 3.64761 13.3733 -0.0 -0.0 3.64494
SB 20.0759 5.24328 19.7766 0.41858 4.30389 26.0178 3.44952 70.1646 3.38881
SB+3 19.8617 0.41409 19.5199 5.18292 3.73465 16.8529 1.61027 35.1406 3.27356
SB+5 19.9613 0.41262 19.5889 5.30028 3.24333 11.7603 -0.0 -0.0 3.20701
TE 20.4608 4.74225 20.0336 0.37041 5.38664 27.3458 3.33079 65.0573 2.78462
I 20.7492 4.27091 20.5640 0.31960 6.86158 27.3186 2.97589 61.5375 1.84739
I-1 20.8307 4.29514 20.4454 0.32402 7.52618 29.8990 3.18616 81.4344 2.00513
XE 21.6679 0.26422 21.0085 3.83526 8.43382 26.2297 2.62265 58.4830 0.26635
CS 22.3163 0.23092 21.1792 3.49464 10.7382 25.1864 1.46163 232.829 -0.70709
CS+1 23.9649 0.20446 21.2204 3.43876 9.76727 23.4941 1.61550 49.7057 -2.56728
BA 27.7489 0.15152 21.3777 3.09817 11.0400 20.6774 2.68186 178.819 -6.85854
BA+2 29.2996 0.14047 21.4669 3.08785 10.9209 20.8818 0.80126 46.8842 -8.48753
LA 33.2109 0.11040 21.7181 2.83641 11.6222 19.3886 3.17239 144.438 -12.7404
LA+3 43.6346 0.07854 21.7192 2.78360 11.7264 18.4930 0.32945 49.2222 -23.4085
CE 29.4100 0.12335 22.2428 2.74837 11.9818 18.3794 3.19259 139.603 -8.84560
CE+3 49.1105 0.06535 22.3499 2.67229 11.8399 17.2040 0.67455 38.1904 -28.9739
CE+4 66.7693 0.04464 21.8563 2.53711 12.2486 16.4477 0.09617 64.4675 -46.9691
PR 22.9220 2.78604 22.2518 0.18015 12.2269 17.6663 2.72431 160.915 -1.13930
PR+3 49.4655 0.06197 22.9705 2.57634 11.8015 16.0371 1.12179 32.3673 -29.3586
PR+4 62.6752 0.04586 22.4952 2.45900 12.4946 15.5713 0.20294 46.5889 -42.8667
ND 23.4069 2.71587 19.7073 0.20950 12.5016 16.9122 2.72850 196.556 1.64038
ND+3 49.4292 0.05936 23.6116 2.48611 11.6190 14.9366 1.68986 28.4515 -29.3493
PM 23.8480 2.65746 17.5535 0.24780 12.7324 16.2463 2.72975 152.682 4.12018
PM+3 49.2699 0.05709 24.2700 2.40099 11.3481 13.9124 2.32869 25.6906 -29.2165
SM 24.2242 2.60993 15.9132 0.29475 12.9238 15.6554 2.72836 149.221 6.19355
SM+3 36.3271 0.07823 24.8502 2.33602 11.3426 13.1872 2.62300 24.3996 -16.1429
EU 24.9148 2.97255 14.8058 0.34930 13.0799 15.1280 2.72477 146.103 7.85731
EU+2 25.6516 2.36073 23.9387 0.13260 10.5738 12.6495 4.05853 25.0026 -3.22358
EU+3 33.2862 0.08350 29.5041 2.26275 11.1494 12.3883 3.13496 22.8351 -13.0748
GD 24.4004 2.47491 14.0308 0.40238 13.1754 14.4670 3.24472 119.738 9.12488
GD+3 29.0290 0.09521 26.1387 2.19696 11.0510 11.7141 3.52244 21.6929 -8.74150
TB 24.3736 2.46637 13.8649 0.47517 13.2510 14.0424 3.24435 117.446 10.2420
TB+3 26.7821 2.13333 25.9463 0.10597 10.9724 11.0974 3.88172 20.7042 -5.58307
DY 24.6193 2.52208 14.2735 0.54556 13.3567 13.8487 2.70316 138.385 11.0290
DY+3 27.3805 2.07832 22.2062 0.12643 10.9975 10.5960 4.10030 19.9671 -1.68516
HO 24.3162 2.52724 14.9012 0.61572 13.3895 13.5041 2.69309 136.246 11.6817
HO+3 27.9956 2.02324 19.9560 0.14275 11.0106 10.1165 4.33205 19.2589 0.70499
ER 23.8201 2.54419 15.8796 0.68445 13.3938 13.1932 2.68190 134.282 12.2062
ER+3 28.5315 1.97796 17.4316 0.17182 11.1113 9.73821 4.43156 18.7294 3.49325
TM 23.1386 2.57320 17.1707 0.74948 13.3703 12.9126 2.66981 132.468 12.6322
TM+3 29.0215 1.93707 15.6168 0.20467 11.2288 9.40342 4.49403 18.2607 5.63812
YB 22.3028 2.61393 18.7202 0.80868 13.3200 12.6590 2.65701 130.783 12.9818
YB+2 29.1313 1.99979 13.5855 0.32335 11.4132 9.59277 4.69659 20.3507 9.17182
YB+3 29.4761 1.89879 14.4357 0.23793 11.3446 9.09408 4.54681 17.8206 7.19600
LU 21.1866 0.88654 20.1760 2.68610 13.0532 12.2746 3.21190 107.128 13.3489
LU+3 29.8480 1.86596 13.6268 0.27623 11.4750 8.82479 4.56009 17.4364 8.48923
HF 24.6725 0.97400 17.2295 2.89038 12.8069 12.2897 3.55970 93.4381 13.7049
TA 28.1757 1.04034 14.4288 3.20784 12.6412 12.5054 3.74436 85.0183 13.9824
W 31.0935 1.07885 12.5273 12.8331 12.3769 3.63298 3.79138 79.7647 14.1842
RE 33.2961 1.09315 12.3497 13.2559 11.2819 4.16736 3.72367 76.6562 14.3239
OS 34.8667 1.08840 11.9524 13.8042 11.1851 4.79179 3.56436 75.1399 14.4097
IR 35.9454 1.06924 11.9980 5.43443 11.2501 14.4983 3.34312 74.7918 14.4449
PT 36.8102 1.04422 13.0747 6.07340 11.3323 15.7018 2.31421 73.8375 14.4526
AU 37.3027 1.00810 14.9306 6.52550 10.3425 16.5100 2.01229 76.9117 14.3992
HG 37.5186 0.96455 17.0353 6.65786 8.51121 16.8438 2.63340 76.7228 14.2911
TL 37.6947 0.92263 19.7195 6.78248 6.38290 19.2435 3.00960 85.9267 14.1800
PB 37.7383 0.87755 21.3394 6.58964 5.17527 21.2437 3.71604 78.8094 14.0203
BI 37.7143 0.83222 22.4542 6.27051 4.84549 24.4693 4.14816 72.1558 13.8301
PO 37.6297 0.78640 23.1323 5.86644 5.59203 27.8678 4.04218 68.1617 13.5991
AT 37.4971 0.74012 23.5635 5.42694 7.15953 29.8350 3.45924 66.3564 13.3183
RN 37.3308 0.69354 23.8933 4.98696 9.02222 30.0338 2.77349 65.5799 12.9796
FR 37.1902 0.65303 24.1306 4.61305 11.5026 29.2597 1.47980 257.965 12.6868
RA 36.9820 0.60394 24.2495 4.17857 11.8719 24.3782 2.72428 200.024 12.1642
AC 36.8705 0.56458 24.7131 3.88776 12.3889 23.1506 3.26501 161.726 11.7484
TH 36.7754 0.52510 25.2506 3.61658 13.0681 22.3410 3.63791 139.164 11.2497
PA 37.1457 0.52020 25.2998 3.66300 13.7846 20.6539 3.29611 150.973 11.4561
U 37.2808 0.90239 25.6563 3.58562 14.3501 19.6342 3.30732 146.633 11.3864
NP 37.3968 0.48676 26.0671 3.52325 14.8366 18.7419 3.31586 142.798 11.3632
PU 37.6407 0.47976 26.5603 3.57178 15.4492 17.9814 2.79814 165.232 11.5358
AM 37.6909 0.46617 27.1436 3.52195 15.7842 17.3069 2.79600 161.931 11.5685
CM 37.5543 0.44932 27.6657 3.38713 15.8858 16.6498 3.32758 133.547 11.5431
BK 37.5273 0.43930 28.3202 3.35014 16.1181 16.1000 3.32793 131.027 11.6823
CF 37.6111 0.43255 29.2465 3.39285 16.4566 15.6791 2.78216 153.766 11.8853
ES 37.4979 0.42353 30.0495 3.35234 16.5881 15.2381 2.77596 151.474 12.0698
FM 37.3380 0.41562 30.8936 3.31193 16.6818 14.8362 2.76929 149.344 12.2983
MD 37.1301 0.40883 31.7721 3.27132 16.7422 14.4683 2.76232 147.353 12.5741
NO 36.8731 0.40324 32.6784 3.23045 16.7732 14.1302 2.75513 145.481 12.9008
LW 36.3813 0.40165 33.1999 3.13608 16.6469 13.7255 3.31406 119.377 13.4313
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[2] J. Bergmann. Beiträge zur Auswertung und Versuchsplanung in der
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